пусть х км/ч - скорость велосепедиста с горы
тогда у км/ч - скорость велосепедиста в гору
расстояние с горы = 3х
расстояние в гору = 5у
известно, что обратный путь он проделал за 16 минут, НО с той же скоростью
составляем уравнене:
3х/у + 5у/х=16
введё1м новую переменную т=х/у
тогда уравнение примет вид:
3т + 5/т=16
приводим к общему знаменателю и получаем:
3т во второй -16т + 5 = 0
решаем квадратное неравенство с дискриминанта:
дискриминант = 256 - 60 = 196
т первое = 16+14/6=5
т второе = 16 - 14/6= 1/3 (посторонний корень, так как т= х/у, а х > у - по условию задачи)
т = 5, а так как т = х/у, то => что х > у в 6 раз
ответ: в 6 раз скорость велосепедиста при движении с горы больше, чем скорость в гору
Поделитесь своими знаниями, ответьте на вопрос:
Знайди область визначення функції \small f(x)=\frac{1}{\sqrt{\lg x+\lg 4-2}} . Вкажи найменше натуральне число, при якому функція має зміст.
ответ: ymin=y(-4)=-164
Объяснение:
Найдите наименьшее значение функции у = х³ - 5х² + 8х + 12 на отрезке [-4;1].
Найдем значение функции на границах отрезка
у(-4) = (-4)³ - 5·(-4)² +8·(-4) + 12 = -64 - 80 - 32 + 12 = -164
у(1) = 1³ - 5·1² +8·1 + 12 = 1 - 5 + 8 + 12 = 16
Найдем производную функции
у' =(х³ - 5х² + 8х + 12)' = (х³)' - (5х²)' + (8х)' + (12)' = 3x² - 10x +8
Найдем критические точки приравняв производную к нулю
3x² - 10x + 8 = 0
D = (-10)² - 4·3·8 = 100 - 96 = 4
x₁ = (10-2)/(2·3) = 8/6 = 4/3 ≈ 1,33
x₂ = (10+2)/(2·3) = 12/6 = 2
Найденные точки не входят в данный отрезок поэтому значения функции в них находить не будем.
Функция на отрезке монотонна и возрастает. Минимальное значение функции находится в точке x = -4 y(-4) = -164