Ордината точки В=4
Объяснение:
Найдём уравнение плоскости АВС. Точки A(1;2;3), B(2;-1;1), C(-1;-2;0).
Вектор АВ = (1; -3; -2), вектор АС = (-2; -4; -3).
(x - 1) (y - 2) (z - 3) | (x - 1) (y - 2)
1 -3 -2 | 1 -2
-2 -4 -3 | -2 -4 = (x - 1)*9 + (y - 2)*4 + (z - 3)*(-4) - (y - 2)*(-3) - (x - 1)*8 - (z - 3)*6 = 9x - 9 + 4y - 8 - 4z + 12 + 3y - 6 - 8x + 8 - 6z +18 = x + 7y - 10z + 15 = 0.
Плоскость АВС пересекает ось Ох при значении координат y = 0, z = 0.
Отсюда координата точки на оси Ох: (-15; 0; 0).
В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Р = Р(к)*Р(р)*Р(о)*Р(т) = 1/4 * 1/3 * 1/2 * 1 = 1/24
ОТВЕТ: 1/24.
Поделитесь своими знаниями, ответьте на вопрос:
По рисунку выберите верные утверждения (их может быть несколько быстрее, тест на время
Абсцисса точки B равна 4