График линейной функции (нет квадратных одночленов) - прямая. Строят прямую по двум точкам. Выберем значения x, найдём соответствующие значения y ⇒ получим точки. Выбирать значения x лучше так, чтобы получить целые координаты точек.
x₁ = -2 ⇒ y₁ = 1,8 - 0,6 × (-2) = 3 ⇒ точка (-2; 3);
x₂ = 3 ⇒ y₂ = 1,8 - 0,6 × 3 = 0 ⇒ точка (3; 0).
Получили две точки. Отмечаем их на координатной плоскости, соединяем линией. Получили нужный график (см. приложение).
Определить принадлежность точек графику данной функции.Чтобы проверить, принадлежит ли точка функции, нужно подставить её координаты в уравнение функции. Если получается верное равенство - точка принадлежит графику функции.
1) А (-2; 5) ⇒ 1,8 - 0,6 × (-2) = 1,8 + 1,2 = 3 ≠ 5 ⇒ точка А не принадлежит.
2) B (-5; 4,8) ⇒ 1,8 - 0,6 × (-5) = 1,8 + 3 = 4,8 ⇒ точка B принадлежит.
ответ: A не принадлежит, B принадлежит.В решении.
Объяснение:
с -3 -2 -1
2с +3 2*(-3)+3= -3 2*(-2)+3= -1 2*(-1)+3 = 1
2(с+3) 2*(-3+3)=0 2*(-2+3)=2 2*(-1+3)=4
(2с)²-3 (2*-3)²-3=33 (2*-2)²-3=13 (2*-1)²-3=1
2(с²-3) 2*((-3)²-3)=12 2*((-2)²-3)=2 2*((-1)²-3)= -4
с 0 1 2 3
2с+3 0+3=3 2*1+3=5 2*2+3=7 2*3+3=9
2(с+3) 2*(0+3)=6 2*(1+3)=8 2*(2+3)=10 2*(3+3)=12
(2с)²-3 (2*0)²-3= -3 (2*1)²-3=1 (2*2)²-3=13 (2*3)²-3=33
2(с²-3) 2*(0²-3)= -6 2*(1²-3)= -4 2*(2²-3)=2 2*(3²-3)=12
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли t3, если t= −0, 2. ответ:
-0,6
Объяснение:
-0,2*3=-0,6