ryazantseva
?>

опнгмраопнопорпнаенвчы3н6оыкгы7л6ш8

Алгебра

Ответы

kyrtlab39

с чем тебе

pokupatel688

I ВАРИАНТ II ВАРИАНТ 1. Для каких чисел определен арксинус? 1. Для каких чисел определен арккосинус? 3 ⎛ 1⎞ 2. Найти а) arcsin(−1) + arcsin ; 2. Найти а) arcsin 0 − arcsin⎜ − ⎟ ; 2 ⎝ 2⎠ ⎛ 3⎞ 3 б) arccos(−1) + arctg 3 . б) arccos⎜ − ⎟ + arcsin . ⎝ 2 ⎠ 2 3.Расположите в порядке возрастания π π arcsin (-0,5), arcsin (-0,7), arcsin . аrcсos 0,9, arcсos (-0,6), arсcos . 8 5 4.Постройте график функции (схематически) y = ⎮arcsin x⎮ y =⎮arctg x⎮

1. Д (у): ≤ 1 или х2 ≥ 1, т.е. ⎢ x2 ⎣ x ≥ 1. ⎡ π⎤ 1 2. Е (у): ⎢0; ⎥ , т.к. 2 > 0 . ⎣ 2⎦ x 3. Функция четная, т.к. у (-х) = у (х). 4. Точки пересечения: с Оу (х = 0) график не может пересекаться, т.к. функция определена толь- 1 ко при ⎮х⎮ ≥ 1; с Ох (у = 0) график пересекается в (-1; 0) и (1; 0), т.к. 2 = 1 лишь при х = ±1. x 5. В силу четности достаточно ее исследовать для х ≥ 1. 1 1 Если х = 1, то у(1) = arccos 1 = 0. Если х → + ∞, то 2 → 0 ( 2 > 0). x x 1 π 1 π Значит, arccos 2 → , причем arccos 2 < . Наименьшее у = 0 при х = ± 1, наибольшего x 2 x 2 нет. 1 6. Функция в области определения неотрицательна, т.е. arccos 2 ≥ 0. x ⎛ π⎞ ⎛ π⎞ 7. Дополнительные точки ⎜ 4 2 ≈ 1,19; ⎟ ; ⎜ 2 ≈ 1,41; ⎟. ⎝ 4⎠ ⎝ 3⎠ <Рисунок 9> В домашнее задание можно включить следующие упражнения: построить графики функ- ⎛ 1⎞ ций: y = arccos ⎜ ⎟ , y = 2 arcctg x, y = arccos ⎮x⎮. ⎝ x⎠

gameover98

x = 6; (x - 6)·(x² + 6x + 39)

Объяснение:

x³ + 3x - 234 = x³ + 3x - 18·13 = x³ + 3x - 18 - 18·12 = x³ - 27·8 + 3·(x - 6) = x³ - (3·2)³ + 3·(x - 6) = (x - 6)(x² + 6x + 36) + 3·(x - 6) = (x - 6)·(x² + 6x + 39);

x = 6 - корень многочлена; второй множитель - квадратный трехчлен с дискриминантом меньше 0, поэтому у него корней нет!

Примечание:

Для того, чтобы не догадываться до разложения многочлена на множители, можно воспользоваться свойством целых (ненулевых) корней целого алгебраического уравнения быть делителем свободного члена и поискать корень среди делителей числа 234:

±1; ±2; ±3; ±6 и т.д. Подойдет число 6. С схемы Горнера можно разделить  x³ + 3x - 234 на x - 6:

\begin{array}{ccccc}\textbf{6}&1&0&3&-234\\&1&6&39&\textbf{0}\end{array}

Получаем:

x³ + 3x - 234 = (x - 6)(x² + 6x + 39)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

опнгмраопнопорпнаенвчы3н6оыкгы7л6ш8
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

deshkina82
AkimovaI1608
Владимировна Екатерина
Решить а) -43, 7 + 2, 35 - 6, 3+ 7, 98; б) 28, 56: 14 + 1, 6 *7, 64
smakejkina
СветланаВАЛМОС
vladimir72tatarkov1317
cetarbkilork82
lpcck2212
Rustamov741
Михайлович Гуртовая929
Орлова
anatolevich1931
Владимир-Денисович1080
balabinatanya7174
Svetlana ALLA