ответ: функция z имеет минимум, равный 2, в точке М(1;1).
Объяснение:
Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:
-1/x²+a=0
-1/y²+a=0
a*(x+y-2)=0
Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.
sokolskiy458
14.06.2022
Как я понял: 3х -4 - это основание логарифма; а + 9х +5 - это выражение под знаком логарифма. Сначала ОДЗ: а +9x +5 > 0 , x > (-5 -a )/9 3x - 4 > 0 x > 4/3 3x -4 ≠ 1 x ≠ 5/3 теперь решаем. по определению логарифма: а + 9х +5 = (3х - 4)⁻¹ а + 9х + 5 = 1/(3х -4) |* (3х -4) (3х - 4)(а + 9х +5) = 1 3ах +27х² +15х - 4а -36х -20 -1 = 0 27х² -3х(а -7) -21 = 0 9х² - х(а - 7) -7 = 0 Чтобы квадратное уравнение имело единственный корень, Ещё понять бы что за промежуток в условии...необходимо, чтобы D= 0 D = b² - 4ac = (a - 7)² - 4*9*(-7) = a² -14a + 49 + 252= a² -14a + 301 a² -14a + 301 = 0 нет решений. Это значит, что дискриминант ≠ 0 Т.е. данное уравнение имеет два корня.
ответ: функция z имеет минимум, равный 2, в точке М(1;1).
Объяснение:
Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:
-1/x²+a=0
-1/y²+a=0
a*(x+y-2)=0
Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.