banketvoshod
?>

Точка А лежит вне эллипса с фокусами F1 F2 отрезки AF1 AF2 пересекают эллипс в точках B и D соответственно. Точка C — точка пересечения отрезков BF2 и DF1. Доказать, что четырёхугольник ABCD можно вписать в окружность

Алгебра

Ответы

natalyaSvetlana
a-x^2 \geq |sinx|

График  y=|sinx|  расположен выше оси ОХ.
Точки пересечения с осью ОХ:  x=\pi n\; ,\; n\in Z .
Графики функций  y=a-x^2 - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0  sin0=0 и точка (0,0) является точкой пересечения 
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0  точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ:  а=0.
При каком значении параметра а неравенство а-x^2больше или равно|sinx| имеет единственное решение? н
Энверович
1) cos²x - 3cosx - 4 =0,  введем замену cos x=t,  с учетом этой замены получим
t²-3t-4=0
D=9+16=25 > 0, значит 2 корня
t₁ = (3+5)/2=4
t₂ = (3-5)/2 = -1
сделаем обратную замену
cos x=4 - не подходит, так как E(y)= [-1;1] -область значений функции косинус
cos x=-1, x=π+2πn,  n∈Z

2) 2 cos²x - 5sinx+1 =0
    2(1-sin²x) -5sinx+1=0
    2 - 2sin²x -5sinx+1=0
    2sin²x+5sinx-3=0
введем замену sinx =t, тогда получим
2t²+5t-3=0
D=25+24=49 >0 - значит 2 корня
t₁ =(-5-7)/4=-3 
t₂ =(-5+7)/4 = 1/2, введем обратную замену
sin x =-3 - не подходит, так как E(y)= [-1;1] -область значений функции синус
sinx = 1/2,     х =π/6 + 2πn  и x= 5π/6 + 2πn ,  где n∈Z

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точка А лежит вне эллипса с фокусами F1 F2 отрезки AF1 AF2 пересекают эллипс в точках B и D соответственно. Точка C — точка пересечения отрезков BF2 и DF1. Доказать, что четырёхугольник ABCD можно вписать в окружность
Ваше имя (никнейм)*
Email*
Комментарий*