Имеем квадратичную функцию , графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:
Найдем дискриминант данного уравнения:
Имеем , значит данное уравнение имеет ровно 2 корня:
Имеем две точки пересечения параболы с осью абсцисс.
Пусть . Тогда . Имеем неверное неравенство. Следовательно, при всех значениях параметра имеем .
Тогда квадратичная функция будет меньше 0 при
Последнее можно записать так:
Обратная замена:
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является интервал
если , то нет корней;если , то если , то
zbellatriks
22.04.2022
1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
Vipnikavto58
22.04.2022
Пусть печенья купили х кг, а конфет - у кг, тогда можно записать систему уравнений:
В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение;
Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья: x+18=38 x=38-18 x=20 (кг)
ответ: печенья купили 20 кг, а конфет - 18 кг.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
с решением, желательно подробно, можно одно из неравенств
Замена:
Имеем квадратичную функцию , графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:
Найдем дискриминант данного уравнения:
Имеем , значит данное уравнение имеет ровно 2 корня:
Имеем две точки пересечения параболы с осью абсцисс.
Пусть . Тогда . Имеем неверное неравенство. Следовательно, при всех значениях параметра имеем .
Тогда квадратичная функция будет меньше 0 при
Последнее можно записать так:
Обратная замена:
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является интервал
если , то нет корней;если , то если , то