X^2 - 2(a-1)x + (2a+1) = 0 1) Если оно имеет действительные корни, то D >= 0 D/4 = (b/2)^2 - ac = (a-1)^2 - 1(2a+1) = a^2 - 2a + 1 - 2a - 1 = a^2 - 4a >= 0 a(a - 4) >= 0 a <= 0 U a >= 4
Знаки корней. 2) Если a <= 0, то a - 1 < 0 x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) < 0 x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) x2 может быть и больше и меньше 0. a) a - 1 + √(a^2 - 4a) < 0 √(a^2 - 4a) < 1 - a a^2 - 4a < a^2 - 2a + 1 2a > -1; -1/2 < a <= 0 b) a - 1 + √(a^2 - 4a) > 0 Аналогично получаем a < -1/2
3) Если a = -1/2, то c = 2a + 1 = 0, тогда x^2 - 2(-1/2 + 1)x + 0 = 0 x^2 - 2(1/2)x = 0 x^2 - x = 0 x1 = 0, x2 = 1 > 0
4) Если a >= 4, то a - 1 > 0 x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) x1 может быть и больше и меньше 0. x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) > 0 a) a - 1 - √(a^2 - 4a) < 0 √(a^2 - 4a) > a - 1 a^2 - 4a > a^2 - 2a + 1 2a < -1 a < -1/2 - не подходит, потому что a >= 4 b) a - 1 - √(a^2 - 4a) >= 0 √(a^2 - 4a) <= a - 1 a^2 - 4a <= a^2 - 2a + 1 2a >= -1 a >= -1/2 - подходит для любых a >= 4 Значит, при любом a >= 4 оба корня положительны. ответ: При -1/2 < a <= 0 будет x1 < 0, x2 < 0 При a = -1/2 будет x1 = 0, x2 > 0 При a < -1/2 будет x1 < 0, x2 > 0 При a >= 4 будет x1 > 0, x2 > 0 При 0 < a < 4 действительных корней нет.
oksanamalakhova004610
29.03.2022
Х км/ч -собственная скорость теплохода, у км/ч - скорость течения реки. (х+у) км/ч - скорость по течению, (х-у) км/ч - скорость против течения. 2(х+у) км - путь за 2 ч по течению, 3(х-у) км - путь за 3 ч против течения. 3(х+у) км - путь за 3 ч по течению, 2(х-у) км - путь за 3 ч против течения. Учитывая соотношения, описанные в условии задачи, получим систему: Умножаем первое уравнение на 3, а второе на 2 и вычитаем почленно:
Значит, 20 км/ч - скорость по течению, 15 км/ч - скорость против течения.
1) Если оно имеет действительные корни, то D >= 0
D/4 = (b/2)^2 - ac = (a-1)^2 - 1(2a+1) = a^2 - 2a + 1 - 2a - 1 = a^2 - 4a >= 0
a(a - 4) >= 0
a <= 0 U a >= 4
Знаки корней.
2) Если a <= 0, то a - 1 < 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) < 0
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a)
x2 может быть и больше и меньше 0.
a) a - 1 + √(a^2 - 4a) < 0
√(a^2 - 4a) < 1 - a
a^2 - 4a < a^2 - 2a + 1
2a > -1;
-1/2 < a <= 0
b) a - 1 + √(a^2 - 4a) > 0
Аналогично получаем
a < -1/2
3) Если a = -1/2, то c = 2a + 1 = 0, тогда
x^2 - 2(-1/2 + 1)x + 0 = 0
x^2 - 2(1/2)x = 0
x^2 - x = 0
x1 = 0, x2 = 1 > 0
4) Если a >= 4, то a - 1 > 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a)
x1 может быть и больше и меньше 0.
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) > 0
a) a - 1 - √(a^2 - 4a) < 0
√(a^2 - 4a) > a - 1
a^2 - 4a > a^2 - 2a + 1
2a < -1
a < -1/2 - не подходит, потому что a >= 4
b) a - 1 - √(a^2 - 4a) >= 0
√(a^2 - 4a) <= a - 1
a^2 - 4a <= a^2 - 2a + 1
2a >= -1
a >= -1/2 - подходит для любых a >= 4
Значит, при любом a >= 4 оба корня положительны.
ответ: При -1/2 < a <= 0 будет x1 < 0, x2 < 0
При a = -1/2 будет x1 = 0, x2 > 0
При a < -1/2 будет x1 < 0, x2 > 0
При a >= 4 будет x1 > 0, x2 > 0
При 0 < a < 4 действительных корней нет.