Пусть второй кран опорожнит полную ванну pf Х мин.
А Р (1/мин) t (мин)
2 кран 1 - 1/X Х
1 кран 1 1/(X+2) X +2
1 + 2 -1 1/(X+2) - 1/X 60 вместе
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е. 1/(х+2)-1/х*60 = -1 (х-х-2)/((х(х+2))*60 = -1 -2/(х*(х+2))=-1/60 Х*(х+2) = 120 х^2+2х-120 = 0 В = 4-4*(-120) = 484(22) х1 = (-2+22)/2 = 10 х2<0
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.
Iselickaya1890
18.02.2022
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
А Р (1/мин) t (мин)
2 кран 1 - 1/X Х
1 кран 1 1/(X+2) X +2
1 + 2 -1 1/(X+2) - 1/X 60
вместе
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е.
1/(х+2)-1/х*60 = -1
(х-х-2)/((х(х+2))*60 = -1
-2/(х*(х+2))=-1/60
Х*(х+2) = 120
х^2+2х-120 = 0
В = 4-4*(-120) = 484(22)
х1 = (-2+22)/2 = 10
х2<0
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.