Середній рівень
У нас є дві точки: A (-1; 1) і B (1; 0).
Запишемо рівняння прямої і підставимо значення координат цих точок.
y = kx + b - У стандартному вікні рівняння прямої.
Підставами координати точки A:
1 = -k + b
Підставами координати точки B:
0 = k + b
Отримуємо систему рівнянь:
1 = -k + b
0 = k + b
Складемо рівняння:
1 + 0 = -k + b + k + b
1 = 2b
b = 0,5
Підставами в уже готове рівняння 0 = k + b знайдене b:
0 = k + 0,5
k = -0,5
Тепер підставимо відомі k і b в рівняння прямої:
y = -0,5x + 0,5 - Відповідь
Без підставим неяк. Можна кращу відповідь?
Поделитесь своими знаниями, ответьте на вопрос:
Решения заданий по теме урока1) Разложение многочленов на множители группировки.1. 1. m – n + 2р(m – n) 6. х - хy – 5х + 5y2. 2. ах + bх + ас + bс 7. m - mn – 9m + 9n3. 3. ах – аy + bх – by 8. х y + хy + ахy + а4. 4. рх + рy – 5х – 5y 9. 2а + а – 10аb – 5b5. 5. 6х + 7y + 42 + хy 10. 2х + 4хy – ах – 23 и 10 не надо решать!
а) Всего все возможных исходов: C^4_{25}C254
Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103
Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103
б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150