Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
timpavilion23
20.11.2022
- гипербола
Основные свойства функций. 1) Область определения функции: x≠0 D(f)=(-∞;0)∪(0; +∞) Область значений функции: y≠1E(f)=(-∞;1)∪(1; +∞)
y>0 x∈(-∞; -2)∪(0; +∞) y<0 x∈(-2; 0)4) Монотонность функции. -2/х²=0 х≠0 Значит точек перегиба нет. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).
5) Четность (нечетность) функции. f(-x) =2/(-х)+1=-2/х+1 -f(x)=-2/x-1f(x)≠-f(x)=f(-x)⇒ значит функция не является ни четной ни не четной
6) Ограниченная и неограниченная функции.
Функция не ограничена ни снизу, ни сверху.
7) У функции нет ни наибольшего, ни наименьшего значений.
8) Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.
Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.