Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
В любом случае получаем ответ:х³-6³.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Многомерная оптимизация по направлению. Найти точку локального минимума функции (x1^2) +(13x2^2) + (x3^2) +3x1x2 – 13x1x3 – x2x3 + x1 – 13x2 + x3
(х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6
Приведём подобные слагаемые:
х³-36*6
Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид:
х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов:
а³-с³=(а-с)(а²+ас+с²)
Наше выражение как раз имеет такой вид:
(х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
В любом случае получаем ответ:х³-6³.