klodialeit36
?>

решить задание с рэш 8 класс алгебра

Алгебра

Ответы

Ivanovich-A.V

Тангенс угла наклона касательной равен производной в точке касания к графику функции.

tgα = y'(x).

1) y = 0,2x^2 + 2x - 4, A(2; 0,8).

Проверяем - принадлежит ли точка данной функции.

0,2*2² + 2*2 - 4 = 0,8. Да, принадлежит.

Находим производную: y' = 0,2*2x + 2.

y'(2) = 0,2*2*2 + 2 = 2,8.

ответ:  tgα = 2,8.

2) y = -3x^2 - x + 5,  А(-2; -5).

Аналогично проверяем - точка А на кривой (парабола).

y' = -6x - 1,

y'(-2) = -6*(-2) - 1 = 12 - 1 = 11.

ответ: tgα = 11.

3) y = (x^2 - 1)/(x - 5), A(3; 3 2/3). (Ели так дано задание)

В этой задаче сложное решение, так как точка А не лежит на кривой.

Производная : y' = (2x(x - 5) - 1*(x^2 - 1))/(x - 5)^2) = (x^2 - 10x + 1)/((x - 5)^2).

Производная в точке касания хо: (xо^2 - 10xо + 1)/((xо- 5)^2).

Получим уравнение касательной проходящей через точку A(3;3 2/3):

3 2/3 = ((xо^2 - 10xо + 1)/((xо- 5)^2))(3 - хо) + ((xо^2 - 1)/(xо - 5)).

Решение затруднено, так функция - кубическая.

Ориентировочно решение найдено графически в программе ГеоГебра: у = -18,76х + 59,95.

График приведен во вложении.


Найдите tg угла наклона касательной к графику функции y(x), проходящей через точку А 1)y=0.2x^2+2x-

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить задание с рэш 8 класс алгебра
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

denbelousov963
Олег2014
Tarakanova_pavel
АнтонАртем
batalerka391
anusha33325
alina-bas
Yulechkaakulova1993
apetit3502
strelnikov-aa
red-sun2
Владислава531
mihalewanadia20176987
koeman
polotovsky