2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
fнаиб = 4; f наим = 0
Объяснение:
28б
f(x) = x³ - 6x² + 9x при х ∈ [0; 3]
Значения функции на концах интервала
f(0) = 0
f(3) = 27 - 54 + 27 = 0
Производная функции
f'(x) = 3x² - 12x + 9
Точки экстремумов
3x² - 12x + 9 = 0
х² - 4х + 3 = 0
D = 16 - 12 = 4 = 2²
x₁ = 0.5(4 - 2) = 1
x₂ = 0.5 (4 + 2) = 3
В точке х₁ = 1 находится локальный максимум
f(1) = 1 - 6 + 9 = 4 - максимальное значение
В точке х₂ = 3 находится локальный минимум
f(3) = 0
Сравнивая со значениями функции на границах интервала, делаем вывод. что наибольшее значение функции на заданном интервале равно 4. наименьшее равно 0.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона треугольника относится как 4: 8: 10, а периметр треугольника образованного его средними линиями, равен 33 дм.найдите среднию линии треугольника
значит периметр исходного треугольника равен 66 найдем чему равна одна часть
66/(4+8+10)=3, т.е. стороны 12,24 и 30, тогда средние линии в два раза меньше
6, 12, 15