x² + 5x - 6 = 0
x₁ = 1 x₂ = - 6
x² - 6x + 9 =
(x - 3)² = 0
x - 3 = 0
x = 3
x(x - 2) = 0
x₁ = 0 x - 2 = 0
x₂ =2
маша за день - x , а лина за день (x + 4) .
маша за 5 дней выполнила 5x , а лина за три дня 3(x + 4) .
уравнение : 5x = 3(x + 4)
ветви параболы направлены вниз значит , a < 0 .
один из корней равен нулю, значит произведение корней равно 0, а это означает что c = 0 , так как :
Поделитесь своими знаниями, ответьте на вопрос:
Два автомобиля выезжают одновременно из одного города в другой. скорость первого на 20км/ч больше скорости второго и поэтому первый автомобиль приезжает на место на 2ч 24мин раньше второго. с какой скоростью шел первый автомобиль, если известно что расстояние между равно 420км?
Решим квадратное уравнение с дискриминанта:
a = 1; b = -2; c = -8;
D = b^2 - 4ac; D = (-2)^2 - 4 * 1 * (-8) = 4 + 32 = 36 (√D = 6);
x = (-b ± √D)/2a;
х1 = (2 - 6)/2 = -4/2 = -2.
х2 = (2 + 6)/2 = 8/2 = 4.)))))) Представим уравнение в следующем виде:
2х * х - 3 * х = 0.
Видим, что члены уравнения в левой части имеют общий множитель х. Вынесем его за скобки и запишем:
х * (2х - 3) = 0.
Полученное выражение является произведением множителей х и (2х - 3). Вспомним, что произведение равно 0 в том случае, если хотя бы один из множителей равен 0. Значит, можно записать равенства:
х = 0 или 2х - 3 = 0.
Значит одним из корней исходного уравнения является х1 = 0.
Найдем второй корень, решив уравнение 2х - 3 = 0.
В этом выражении 2х — уменьшаемое, 3 — вычитаемое, 0 — разность. Чтобы найти уменьшаемое, необходимо к разности прибавить вычитаемое:
2х = 0 + 3,
2х = 3.
В последнем выражении 2 и х — множители, 3 — произведение. Чтобы найти неизвестный множитель, необходимо произведение разделить на известный множитель:
х = 3 : 2,
х = 1,5.
Таким образом, мы нашли второй корень уравнения: х2 = 1,5. )))))))))))))) Поделим уравнение на х²:
2х4 + 5х3 + 6х² + 5х + 2 = 0.
2х² + 5х + 6 + 5/х + 2/х² = 0. Представим 6 как 4 + 2.
2х² + 5х + 4 + 2 + 5/х + 2/х² = 0
Сгруппируем одночлены: (2х² + 4 + 2/х²) + (5х + 5/х) + 2 = 0.
2(х² + 2 + 1/х²) + 5(х + 1/х) + 2 = 0.
Введем новую переменную, пусть х + 1/х = а.
Так как а² = (х + 1/х)² = х² + 2 * x * 1/x + (1/x)² = х² + 2 + 1/х².
Получается уравнение: 2а² + 5а + 2 = 0.
D = 25 - 16 = 9 (√D = 3);
а1 = (-5 + 3)/4 = -2/4 = -1/2.
а2 = (-5 - 3)/4 = -8/2 = -2.
Вернемся к замене х + 1/х = а.
а = -1/2; х + 1/х = -1/2; х + 1/х + 1/2 = 0; (2x² + x + 2)/2x = 0; 2x² + x + 2 = 0; D = 1 - 16 = -15 (нет корней).
а = -2; х + 1/х = -2; х + 1/х + 2 = 0; (х² + 2х + 1)/х = 0; х² + 2х + 1 = 0; D = 4 - 4 = 0 (один корень); х = -2/2 = -1.
ответ: корень уравнения равен -1.
Объяснение:Всё