поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
Объяснение:
поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5
На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.
Технически метод замены переменной в неопределенном интеграле реализуется двумя :
– Подведение функции под знак дифференциала;
– Собственно замена переменной.
По сути дела, это одно и то же, но оформление решения выглядит по-разному.
Начнем с более простого случая.
Подведение функции под знак дифференциала
На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:
То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.
Пример 1
Найти неопределенный интеграл. Выполнить проверку.
Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?
Подводим функцию под знак дифференциала:
Раскрывая дифференциал, легко проверить, что:
Фактически и – это запись одного и того же.
Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?
Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.
Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:
Теперь можно пользоваться табличной формулой :
Готово
Единственное отличие, у нас не буква «икс», а сложное выражение .
Выполним проверку. Открываем таблицу производных и дифференцируем ответ:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Найти неопределенный интеграл.
:
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
На середине перегона длиной 224 км поезд был задержан на 13 мин. хотя машинист увеличил скорость поезда на 10 км/ч, в пункт назначения поезд прибыл с опозданием на 1 мин.с какой скоростью шел поезд после остановки? напишите с ходом решения,
за х км/ч принимаем - начальную скорость поезда. строим уровнение ориентируясь на время в пути:
224/х=112/х+13/60+112/(х+10)-1/60 - вычитаем 1/60 т.к. он опоздал на минуту
решаем
224/х-112/х=12/60+112/(х+10)
112/х-112/(х+10)=12/60 приводим к общему знаменателю
112*60*(х+10)-112*60*х=12*х*(х+10)
112*60*(х+10-х)=12*х*(х+10)
112*60*10=12*х*(х+10)
перемножаем
12х^2+120х-67200=0
делим все на 12
x^2+10x-5600=0
и дальше по дискриминанту
d=10^2-4*1*(-5600)=100+22400=22500
и дальше корни:
первый корень х=(-10-корень из 22500)/2=-80 не подходит,т.к. скорость не может быть отрецательной
второй корень х=(-10+корень из 22500)/2=70 подходит
может где в арифметике ошиблась, а идея такая