Vladimirovna Viktorovna
?>

Прямая y=-4x-8 является касательной к графику функции y=x3-3x2-x-9.найдите абцису

Алгебра

Ответы

gsktae7

как ни странно, здесь проще решать уравнение -4x-8=x^3-3x^2-x-9

x^3-3x^2+3x-1=0

(x-1)^3=0

x=1

 

дальше для очищения совести можно проверить, что y'(1)=-4, но это просто.

cherry-sweet871435

y ' = 3x^2 - 6x - 1 = - 4,   3x^2 - 6x + 3 = 0,   x^2 -2x +1 =0,   (x - 1)^2 = 0,   x = 1

можно проверить, будут ли одинаковы ординаты у функции и прямой. если - да, то эта точка - точка касания. особенно это важно, если получилось два значения х.

проверка:   у = - 4 - 8 = - 12;   у = 1 - 3 - 1 - 9 = - 12 

 
mashere59
Х+ (- 2,6) = 0           х : (- 3,4) = 0                х - (- 0,4) = - 1/2 х - 2,6 = 0                 х = 0 * (- 3,4)                х + 0,4 = - 0,5  х = 2,6                       х = 0                             х = - 0,5 - 0,4                                                                       х = - 0,9
nailboxru

К графику функции y = f(x) =  x² - 4x из точки А(3;-19) проведены касательные. Напишите уравнения этих касательных.

Объяснение:  

! ! А(3; - 19)  ∉ к графику функции y =  x² - 4x    3² -4*3 = -3 ≠ -19  

Уравнение касательной к графику функции y = f(x)  в точке  

(x₀ ; y₀)  имеет вид :  

y = f (x₀) +f ' (x₀) (x - x₀)

f (x₀)  = x₀² - 4x₀

f '(x) = (x² - 4x ) ' = 2x - 4   ⇒  f '(x₀)  = 2x₀  - 4 =2(

y =   x₀² -  4x₀ +(2x₀ - 4 )( x- x₀ ) =    x₀² -  4x₀ +(2x₀ - 4)* x - 2x₀² + 4x₀

y  = (2x₀  - 4) )* x  -  x₀².    * * *   k =  2x₀  - 4 ;   b = - x₀²  * * *

Касательные проведены из точки  А(3;-19) ,следовательно :

- 19 = 2(x₀  - 2 )*3 - x₀²  ⇔  x₀²- 6x₀ - 7 = 0 _ квадратное уравнение относительно x₀.    * * *  x₀ = 3 ± √( (3² -(-7) ) ⇔ x₀ = 3 ± 4 * * *

или  x₀ = - 1   ; x₀  =7  по теореме Виета .

----

или  x₀²- 6x₀ - 7 = 0 ⇔ x₀²- 7x₀ + x₀ - 7=0 ⇔x₀(x₀ -7)+ (x₀ - 7) =0 ⇔

(x₀ +1) (x₀ - 7) =0  ⇒ x₀ = - 1 ; x₀  = 7  .  

Уравнение касательной будет :

а )  y  = (2*(-1)  - 4 )*x - (-1)²  = - 6x - 1 ;         T₁  (-1 ; 5)

б)    y  = (2*7   -  4 )* x - 7² = 10x - 49  ;        T₂(7; 21) .

y  = - 6x - 1, y = 10x - 49 .                          

* * *   T₁  (-1 ; 5)   и    T₂(7; 21)  точки касания * * *

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Прямая y=-4x-8 является касательной к графику функции y=x3-3x2-x-9.найдите абцису
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lechic3
fokolimp
dawlatowajana
Олег2014
Хрулёва
d43irina
Сурат1199
Андреевна-Арзуманян1109
arturo95
ГегамБукреев830
ddavydov1116
superbalsa
Zakharov Lilit
tigran87-87
asparinapti39