левая часть квадратного уравнения - это квадратный трехчлен.
разложение квадратного трехчлена на множители
аx² + bx + c = а(х - х₁)(х - х₂), где х₁ и х₂ - корни квадратного трехчлена.
воспользуемся этой формулой, применив ее справа налево:
1) х₁ = 2, х₂ = 3
(х - 2)(х - 3) = 0,
х² - 2х - 3х + 6 =0,
х² - 5х + 6 = 0
2) х₁ = 6, х₂ = 2
(х - 6)(х - 2) = 0,
х² - 2х - 6х + 12 =0,
х² - 8х + 12 = 0
3) х₁ = 5, х₂ = 3
(х - 5)(х - 3) = 0,
х² - 5х - 3х + 15 =0,
х² - 8х + 15 = 0
4) х₁ = 1, х₂ = 2
(х - 1)(х - 2) = 0,
х² - 2х - х + 2 =0,
х² - 3х + 2 = 0
так как квадр. корень может принимать неотрицательные значения, то есть ,то тем более
для всех значений переменной "х" из области допустимых значений (одз).
поэтому решением неравенства будут те значения переменной "х", которые входят в одз.
ответ:
Поделитесь своими знаниями, ответьте на вопрос: