Naumenkova-Ivanov
?>

Напряжение в цепи переменного тока изменяется по закону u=280, cos=200пт.чему равны амплитудное значение напряжения, циклическая частота, период и частота электромагнитный колебаний.чему равна фаза колебаний и напряжение в момент времени 0, 01 с

Физика

Ответы

viktort889841
Амплитудное значение напряжения Um=280 В 
циклическая частота ω=200π рад/с
ω=2πv
частота v=ω/2π=100 Гц
период Т=1/v= 0,01 с
В момент времени  0,01 с фаза колебаний: 200π*0,01с=2π =6,28 рад
u=280*cos2π= - 280 В 
shneider1969

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду через электролит

Электрохимический эквивалент вещества - табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах - очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.

artemka56rus

Объяснение:

Теория распространения упругих (сейсмических) волн базируется на теории упругости, так как геологические среды в первом приближении можно считать упругими. Поэтому напомним основные определения и законы теории упругости применительно к однородным изотропным средам.

Установлено, что под действием внешних нагрузок жидкие и газообразные тела изменяют свои объем и форму, деформируются. При деформации частицы тела смещаются относительно друг друга и исходного положения. Величина и направление перемещений определяются величиной и характером внешних сил и свойствами тела. Положение частиц тела после деформации можно найти, если известен вектор перемещений U(х, у, z), ..При этом изменится длина его ребер, а прежде прямые углы между соответствующими ребрами станут тупыми или острыми. Количественной мерой деформации являются относительные удлинения ребер малого параллелепипеда и абсолютное изменение углов относительно 90°. Таким образом, деформация полностью описывается шестью компонентами. Три первые компоненты называются продольными (нормальными) деформациями, три последние — сдвиговыми.

При снятии нагрузки частицы тела могут вернуться или не вернуться в исходное положение. В первом случае говорят об обратимых, а во втором о необратимых деформациях. Тела, в которых развиваются только обратимые деформации, называют упругими. Тела, в которых развиваются только необратимые деформации.

При деформации в упругом теле возникают внутренние напряжения, обусловленные упругим взаимодействием между частицами тела. На каждую площадку малого размера, мысленно выделяемую в теле, действуют напряжения, имеющие в общем случае одну составляющую, перпендикулярную к площадке, — нормальное напряжение, и две, направленные вдоль площадки, называемые сдвиговыми напряжениями. Три компоненты напряжения задаются с шести компонент тензора напряжения. Эти шесть компонент связаны с шестью компонентами малых деформаций законом Гука.

При одноосном сжатии (растяжении) призмы из твердого тела относительное изменение ее длины вдоль направления действующего напряжения выражается соотношением

где Ω — величина внешней нагрузки; Е — модуль Юнга; Л — длина призмы; ΔЛ — изменение длины.

Опыт показывает, что удлинение призмы всегда сопровождается сокращением ее поперечных размеров a и b на Δa и Δb. Для изотропных тел ΔЛ/Л, Δa/a, Δb/b и (Δa/a)/(Δb/b) = Δ остаются неизменными, независимо от того, каким образом была ориентирована призма в породе, где Δ — коэффициент Пуассона.

Модуль Юнга (E) и коэффициент Пуассона (Δ) полностью определяют упругие свойства таких тел. Для анизотропных сред при неизменной осевой нагрузке относительные удлинения ребер призмы будут зависеть от того, как была ориентирована ось призмы в породе, иными словами, упругие свойства зависят от направления внешних нагрузок. Изотропные тела можно также описать с упругих констант Ламэ — модуля сжатия (λ) и модуля сдвига (µ). Эти модули однозначно связаны с модулем Юнга (Е) и коэффициентом Пуассона (Δ):

При всестороннем сжатии упругих тел, например, путем повышения давления жидкости, в которой расположен образец, объем тел уменьшается. Относительное изменение объема (ΔV/V) при этом линейно связано с давлением:

Коэффициент (kc) называют модулем всестороннего сжатия. Для изотропных тел связь между kc, λ и μ имеет вид

В жидкостях и газах μ = 0 и kc = λ.

Если упругие свойства тел не изменяются при переходе от точки к точке тела, то такие тела называют однородными. В противном случае тело называют неоднородным. В неоднородных изотропных телах λ, μ и kc — функции координат.

При деформации упругого тела под действием внешней нагрузки размеры тела изменяются, например, стержень сжимается. Если при снятии внешней нагрузки вся потенциальная энергия переходит в кинетическую, то тело называют идеально-упругим. Если же часть энергии уходит на необратимые процессы, например, превращается в тепло, то тело называют вязко-упругим, неидеально-упругим.

тел деформироваться является причиной того, что напряжение от зоны действия внешней нагрузки распространяется на все области тела с конечной скоростью, определяемой упругими модулями и плотностью. Распространяющееся в упругом теле напряжение порождает деформации — перемещения частиц тела, которые можно измерить. Наблюдения за перемещением частиц тела позволяют экспериментально измерять скорости распространения упругих волн и выявлять различия в физических свойствах горных пород или их состоянии.

4.2.2. УПРУГИЕ ВОЛНЫ В БЕЗГРАНИЧНЫ

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Напряжение в цепи переменного тока изменяется по закону u=280, cos=200пт.чему равны амплитудное значение напряжения, циклическая частота, период и частота электромагнитный колебаний.чему равна фаза колебаний и напряжение в момент времени 0, 01 с
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

BogdanR106203
missbuhgalter2013
arionul-secondary2
Эвелина
Korneeva1856
tatiyanabe2013727
Остап-Лаврова1410
Любовь-Волков1205
Даниил247
aerendzhenova5
Radikovnanikolaeva
Акимцева27
vladai2
Павловна1750
Рогова Ольга1156