Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.
Sc = d²·tgα·√2/(2+tgα).
Sб = 4d²·tgα/(2+tgα).
So = d²/(2+tgα).
Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.
Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).
Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).
d² = a²·tg²α+2a² = a²(2+tgα). => a = d/(√((2+tgα)).
h = a·tgα = d·tgα/(√((2+tgα)).
Тогда площадь диагонального сечения равна:
Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).
Площадь боковой поверхности равна произведению периметра основания на высоту призмы:
Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).
Площадь основания (квадрата) равна квадрату стороны:
So = a² = d²/(2+tgα).
Поделитесь своими знаниями, ответьте на вопрос:
Отрезки ав и сd – хорды окружности, ав‖cd. докажите, что ас=bd. (см. рисунок) (подсказка провести перпендикуляры из а и в)