Обозначим через х длину меньшего основания данной трапеции.
Согласно условию задачи, одно основание данной трапеции на 4 см больше другого, следовательно, длина большего основания данной трапеции составляет х + 4.
Также известно, что длина средней линии данной трапеции равна 8 см
Посколькуо в любой трапеции длина средней линии трапеции равна полусумме длин оснований этой трапеции, можем составить следующее уравнение
Объяснение:
(х + х + 4) / 2 = 8.
Решая данное уравнение, получаем:
2х + 4 = 8 * 2;
2х + 4 = 16;
2х = 16 - 4;
2х = 12;
х = 12 / 2;
х = 6 см.
Находим длину большего основания:
х + 4 = 6 + 4 = 10 см.
ответ: длины основании данной трапеции равны 6 см и 10 см.
Поделитесь своими знаниями, ответьте на вопрос:
Основание ав трапеции abcd параллельно плоскости α, а вершина с лежит в этой плоскости. докажите, что: б) средняя линия трапеции параллельна плоскости α.
Параллельные плоскости α и β пересекают сторону КА угла ВКА соответственно в точках А₁ и А₂ , а сторону КВ этого угла -соответственно в точках В₁ и В₂. Найдите КА₂, ВА₂ если А₁А₂=3КА₁ , КВ₁:В₂В₃=1:3 , А₁А₂=18 см, КВ₁=6 см.
Объяснение:
Тк α║β , то плоскость (КА₂В₂) пересекает α и β по параллельным прямым ⇒А₁В₁║А₂В₂.
⇒ КА₂=4*КА₁. КВ₁:В₂В₃=1:3 ⇒ КВ₂=4*КВ₁ .
ΔКА1В1~ΔКА2В2 по 2-м угла : ∠К общий , ∠КА1В1=∠КА2В2 как соответственные при А₁В₁║А₂В₂, КА₂- секущая. Значит сходственные стороны пропорциональны. А т.к. на А₁А₂ приходится три части , по условию, или 18 см , то на одну часть приходится 6см ⇒
КА₂=4*6=24 (см)
На КВ₂ приходится 1+3=4 части. По условию КВ₁=6см ⇒
КВ₂=4*6=24 см.