Lugovoi
?>

Найдите объем правильной треугольной призмы, если сторона ее основания равна 2 м и боковая поверхность равновелика сумме оснований

Геометрия

Ответы

natapetrova20017

объем призмы равен произведению площади основания на ее высоту. 

v=s·h

в основании правильной треугольной призмы лежит правильный треугольник  со стороной  2. по свойствам правильного треугольника

  высота h  основания =(2√3): 2  =√3, а площадь равна 

s=½·2·√3=  √3

площадь обоих оснований вдвое больше:

s=2√3

  боковая поверхность  призмы равна произведению периметра основания на высоту, а в данной призме равновелика сумме оснований   2√3 .

периметр равен 2*3=6 

высоту боковой грани найдем 

2√3: 6=⅓•√3

объем призмы

v=s·h=√3·  ⅓•  √3=1

 

olegmgu1
А) допустим ak <   bk (точка  k ближе  к  вершине  a)  .  обозначаем   сторону основания правильной  пирамиды ab=bc =cd =da =a  ; пусть выполняется  s(abcd) =s(kpm) ⇔ a² =km*po/2  ⇔a² =km*(1,5a)/2⇒km= 4a/3 .   ab= a<   4a/3  < a√2  =ac ,.т.е    km  не  ⊥  ad   и   km не совпадает   с    диагоналями основания  . б) через центр основания  o  проведем    ef ⊥  ad (тоже самое  ef  ⊥  cd),  где  e  ∈ [ad]   ,      f ∈ [bc]  .   || k∈[ae] || δoek =  δofm   по второму признаку равенства треугольников    (oe=of=ab/2 ; ∠oek =∠ofm=90°    и    ∠koe =∠mof-вертикальные углы) . mf=ke .   sпол(pabmk) =   s(abmk) +s₁бок  . s(abmk) =(ak +bm)/2 *ab ;   ak +bm =(a/2 -ke) +(a/2 +mf) =a.   ⇒s(abmk) =(ak +bm)/2 *ab=a/2  *a =a²/2. s₁бок   =s(apk) +s(bpm)+s(apb)  +s(kpm)  =ak*h/2+bm*h/2+a*h/2+a²=   =(ak+bm)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a²  =a*h+a² .   sпол(pabmk)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2,  где   h_длина апофема  .    δepf   h =ep=√((a/2)² +po²) =√(a²/4 +9a²/4) =(a√10)/2 . sпол(pabcd) =   s(abmk) +s₂бок  =a²+4*a*h/2 =a²+2*a*h    ;   sпол(pabmk)/  sпол(pabcd) =(3a²+2a*h  )/2   : (a²+2*a*h)    =   =a²(3+√10)/2 : a² (1+√10) =(3+√10)  /  2(1+√10).
lider123
Если о - центр исходной окружности, а м - середина дуги bc, то ∠bcm=∠bom/2 (т.к. угол вписанный в окр. равен половине дуги, на которую он опирается), ∠mca=∠moc/2 (т.к. угол  между касательной и хордой из точки касания равен половине угла, который стягивает хорда). т.к. ∠bom=∠com (у нас м - середина дуги bc), то ∠bcm=∠mca. т.е. mc - биссектриса  угла bca. аналогично, bm - биссектриса угла abc. т.е. середина дуги лежит на пересечении биссектрис треугольника abc, т.е. совпадает с центром вписанной окружности.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите объем правильной треугольной призмы, если сторона ее основания равна 2 м и боковая поверхность равновелика сумме оснований
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sashulyah3183
delo1005
krasilnikov74
most315
Ильдар-Кугай
annasv8
mrvasilev2012
rastockin8410
TSKaraulova
dmdlir
Сергеевна
docvet4
Константиновна
Astrians
Reginahappy