Пусть дан △АВС равнобедренный , ВС - основание, т.О ∈ ВС, F ∈ AB,
E ∈ AC ; ОЕ || АВ и ОF || АС ; ОFАЕ = 32см. Найдём АВ - ?
Решение
∠1 = ∠2 потому что △ АВС равнобедренный ( по условию ).
ОF || АС по условию, поэтому ∠2 =∠3 ( соответственные углы образованные при пересечении этих прямых секущей ВО ), значит
∠1 =∠3.
Рассмотрим △ВFO : равнобедренный, BF = FO.
ОЕ || АВ и ОF || АС по условию,значит OFAE - параллелограмм.
По свойству сторон и углов параллелограмма AF = OE и FO = AE.
Найдём периметр РОFАЕ :
Р(ОFАЕ) = 2 * AF + 2 * FO
Р(ОFАЕ) = 2( AF+FO)
BF = FO , то Р(ОFАЕ) = 2( AF + BF)
Р(ОFАЕ) = 2 * АВ
АВ = Р(ОFАЕ) /2 = 32/2 = 16
Задание 1.
Дано:
Δ KBG
∠ K = 46°
∠ L = 85°
Найти:
∠ G = ?°
По основному свойству треугольников мы знаем, что сумма всех углов равно 180°. Значит, чтобы найти ∠ G, необходимо из 180° вычесть градусные меры ∠ K и ∠ L:
∠ G = 180° - ∠ K - ∠ L = 180° - 46° - 85° = 49°.
ответ: ∠ G = 49°.
Задание 2.
Дано:
Прямоугольный треугольник
Один из острых углов прямоугольника = 82°
Прямой угол = 90°
Найти:
Градусную меру второго острого угла.
Для удобства назовём прямоугольный треугольник ABC, где известный острый угол - A, прямой угол - B, неизвестный острый угол - C.
По основному свойству треугольников мы знаем, что сумма всех углов равно 180°. Значит, чтобы найти ∠C, необходимо из 180° вычесть градусные меры ∠A и ∠B:
∠C = 180° - ∠A - ∠B = 180° - 82° - 90° = 8°.
ответ: Величина второго острого угла = 8°.
Поделитесь своими знаниями, ответьте на вопрос: