Получается тедо, состоящее из двух одинаковых конусов с углом при вершине 60 и образующей a (см. рис.).
Рассмотрим треугольник ABC, являющийся осевым сечением "верхнего" конуса. Угол B = 60 градусов, стороны AB и BC равны. Значит, треугольник ABC - равнобедренный. Углы A и C равны.
A = C = (180-60):2 = 120:2 = 60
Все углы ABC равны 60 градусов. Треугольник правильный (равносторонний). AC = a см.
Площадь поверхности вращения равна сумме площадей боковых поверхностей конусов. Радиус основания равен AC/2 = a/2 см.\
Sпов = 2*Sбок = 2*П*R*l = 2*П*a/2*a = Пa^2 кв.см.
П - это "пи"
Ромб с острым углом а , равным 60°и стороной а вращается около большой диагонали. найти площадь пове
Объяснение:
вроде так ☺️
Решение основано на свойстве угла между секущей и касательной, который равен половине центрального угла в точки касания и пересечения.
Треугольник АРT получается равнобедренным, отсюда определяется первая искомая величина: РТ = 16.
АР = 2*16*cos A = 2*16*(√39/8) = 4√39 ≈ 24,98.
Вторая искомая величина: АР² = 16*39 = 624.
Находим косинус двойного угла:
cos(2A) = 2cos²A - 1 = (2*39/64) - 1 = 14/64 = 7/32.
По теореме косинусов в треугольнике РОТ находим:
(r² + r² - 16²)/(2*r*r) = 7/32.
Отсюда находим r = 12,8.
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник авс ( е-медиана) тема прямоугольные треугольники дано: а=30° е=60° ес=7см асв=90°(по условию) ве-медиана найти: ае