1) S = 1/6
2) S = 1/2
3) S = 5/9
Объяснение:
Площадь треугольника можно вычислить по следующей формуле:
1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)
Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол у единичного и у малого треугольника общий, то
и площадь S1 равна
А т.к.
2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Соответственно, искомая площадь составляет
3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:
Следовательно, общая площадь незакрашенных частей равна:
А искомая площадь закрашенной фигуры S1 составляет
Объяснение:
Возьмем произвольный четырёхугольник ABCD у которого диагонали перпендикулярны см рис
координаты точек А(0;0), В(3;5,2), С(9;5,2), Д(6;0), В₁(1,5;2,6), Д₁(3;0)
Т . В₁ и Д₁ середины АВ и AD
из этих точек найдем уравнение прямой ⊥ СД и ВС
уравнение прямой СД по двум точкам С, Д у₁=1,73х-10,4
уравнение прямой А₁Д₁ ⊥ ВС: х=3
уравнение прямой А₁В₁ ⊥ СД: у₂=-0,58х+3,47
Прямая, проходящая через точку В₁(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
(х-х₀)/А=(у-у₀)/В
Уравнение прямой :
(х-1,5)/(-1,73)=(у-2,6)/1 ⇒ y₂ = -0.58x + 3.47
найдем точку пересечения прямых А₁
х=3
y₂ = -0.58x + 3.47
А₁(3;1,74)
прямая АС имеет уравнение у₃=0,58х
сравним ординату точки пересечения А₁ 1,74 со значением у₃ при х=3
у₃=0,58*3=1,74
Координаты точек совпадают
Что и следовало доказать
Поделитесь своими знаниями, ответьте на вопрос:
Mn и nk- отрезки касательных, проведенных к окружности с центром о, угол mnk= 90. найти радиус окружности, если on= 2 корня из двух см.