Объяснение:
Обозначим данный по условию треугольник АВС, АВ = 36 см, ВС = 29 см, АС = 25 см. Высота СН делит сторону АВ на отрезки ВН = х см, и АН = 36 – х см.
Высота СН разделила треугольник АВС на два прямоугольных треугольника: ВСН и АСН. В каждом из них запишем СН по теореме Пифагора.
CH² = AC² - AH² = 25² – (36 – x)² = 625 – 1296 + 72x – x² = 72x – x² - 671
CH² = BC² - BH² = 29² - x² = 841 – x².
Получаем уравнение:
72x – x² - 671 = 841 – x²
72х = 1512
х = 21 (см) – отрезок ВН.
CH = √(BC² - BH²) = √(841 – 441) = √400 = 20 (см).
ответ: высота СН равна 20 см.Объяснение:
Дано:
Отрезки АС и ВК пересекаются в точке О,
АО = ОС,
ВО = ОК.
Доказать что треугольник АОК равен треугольнику ВОС.
Доказательство:
1) Рассмотрим треугольник АОК и ВОС. У них АО = ОС, ВО = ОК, угол АОК = углу ВОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОК = ВОС. Значит АК = ВС;
2) Рассмотрим треугольник АОВ и КОС. У них АО = ОС, ВО = ОК, угол АОВ = углу КОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОВ = КОС. Значит АВ = КС;
3) Треугольник АВС = СКА по трем сторонам, так как АК = ВС, АВ = КС и ВК - общая. Доказано.
Поделитесь своими знаниями, ответьте на вопрос: