угол а= 60°
Угол b =50°
Угол с =70°
Объяснение:
Дано: треугольник аbс, аb>bc>ас, угол 1= 60°,угол 2= 50°
Мы не знаем, какой угол а, какой b, поэтому обозначим их цифрами.
Найти: угол а, угол b, угол с.
1) Так как это треугольник сумма его углов равна 180°. угол а+угол b+ угол с =180°.
2) Из этого, угол 3= 180°-(50°+60°)=70°.
3) По теореме о соотношениях между сторонами и углами в треугольнике напротив бОльшей стороны лежит бОльший угол. БОльшая - аb. Значит угол с - самый большой, равен 70°.
4) По теореме о соотношениях между сторонами и углами в треугольнике напротив меньшей стороны лежит меньший угол. Меньшая сторона - ас, значит меньший угол-b.равен 50°.
5) Следовательно угол а= 60°.
P ≈ 66,425 см
Объяснение:
Площадь треугольника ABC равна 96 см^2, угол A = 30°.
Стороны AB и AC, прилегающие к этому углу, относятся как 3 : 8.
Найти периметр треугольника.
Так как стороны AB : AC = 3 : 8, то можно обозначить:
AB = 3k; AC = 8k.
Формула площади треугольника, нужная нам в данном случае:
S = 1/2*AB*AC*sin A = 1/2*3k*8k*sin 30° = 1/2*24k^2*1/2 = 6k^2 = 96
Отсюда
k^2 = 96/6 = 16; k = 4
Значит:
AB = 3k = 3*4 = 12 см
AC = 8k = 8*4 = 32 см
Теперь найдем сторону BC по теореме косинусов:
BC^2 = AB^2 + AC^2 - 2*AB*AC*cos A = 12^2 + 32^2 - 2*12*32*cos 30° =
= 144 + 1024 - 768*√3/2 = 1168 - 384√3 ≈ 502,8925
BC ≈ √502,8925 ≈ 22,425 см
Периметр:
P = AB + AC + BC ≈ 12 + 32 + 22,425 = 66,425 см
Поделитесь своими знаниями, ответьте на вопрос:
Определите вид треугольника со сторонами 50 см, 30 см и 40 см?