Mikhailovich_Viktoriya
?>

Большее основание трапеции 19 см, высота 7 см, проекции боковых сторон на основание 3 см и 5 см. найдите площадь этой трапеции

Геометрия

Ответы

kolyabelousow4059
S= ad=19; h=7; bc = ad - (ak+ld), где ak и ld - проекции боковых сторон bc= 19 - (3+5) = 11 см s= 7*(19+11)/2 = 105 ответ: 105 см
assistant

Объяснение: ЗАДАНИЕ 3.3

Если боковое ребро составляет с основанием угол 45, то треугольник, который образуют высота и основание пирамиды является прямоугольным и равнобедренным, в котором высота пирамиды и проэкция рёбра на основание являются катетами а боковое ребро - гипотенузой, поэтому высота пирамиды тоже будет 10см. Также в прямоугольном равнобедренном треугольнике гипотенуза в √2 раз больше катета, поэтому боковое ребро=10√2см. Если провести апофему, то она делит боковую грань и сторону основания пополам, образуя при этом 2 прямоугольных треугольника, поскольку боковая грань тоже является равнобедренным треугольником, поэтому апофема является биссектрисой и высотой. Так как сторона основания дклится пополам то половина основания будет 10/2=5см. Найдё апофему по теореме Пифагора:

Апоф²=(10√2)²-5²=100×2-25=200-25=175;

Апоф=√175=√3×25=5√3см

Апоф=5√3см.

Теперь найдём площадь боковой грани пирамиды по формуле:

Sбок.гр=½×а×h, где а- сторона основания, а h- апофема, (высота) проведённая к этой стороне.

Sбок.гр=½×10×5√3=5×5√3=25√3см². Так как таких граней в пирамиде 3 то мы можем найти площадь боковой поверхности: Sбок.пов=25√3×3=75√3см²

ОТВЕТ: Sбок.пов=75√3

ЗАДАНИЕ 3.4

Боковое ребро и высота пирамиды вместе с основанием образуют прямоугольный треугольник, в котором проэкция бокового рёбра на основание и высота пирамиды являются катетами а боковое ребро - гипотенузой. Найдём величину проэкция на основание по теореме Пифагора:

Проэк²=бок.р²-выс²=5²-3²=25-9=16;

Проэк=√16=4см

Если провести вторую такую же проэкцию от соседнего ребра, то получится равнобедренный прямоугольный треугольник, в котором 2 проэкции являются катетами а сторона основания - гипотенузой и катеты равны между собой. Гипотенуза в равнобедренном прямоугольном треугольнике больше катета в √2 раз, поэтому сторона основания =4√2см. Так как в правильной четырёхугольной пирамиде в основании лежит квадрата, то его площадь вычисляется по формуле: S=a², где а - его сторона. Найдём площадь основания используя эту формулу: Sосн=(4√2)²=16×2=32см²

Теперь, зная основание пирамиды и её высоту найдём её объем по формуле:

V=⅓×Sосн×h, где h- высота пирамиды:

V=⅓×32×3=32см³.

ОТВЕТ: V=32см³

nalich8524
Дано:

Шар вписан в конус.

Осевое сечение конуса - правильный △АВР.

АР = РВ = АВ = 3 см

Найти:

S поверхности шара - ?

Решение:

Так как △АВР - правильный ⇒ он ещё и равнобедренный.

РО₁ - высота.

"Высота, проведённая из вершины равнобедренного треугольника к основанию равнобедренного треугольника, является его медианой и биссектрисой".

⇒ АО₁ = О₁В = 3/2 = 1,5 см, так как РО₁ - медиана.

Найдём высоту РО₁, по теореме Пифагора: (с = √(а² + b²), где с - гипотенуза; а, b - катеты).

а = √(c² - b²) = √(3² - 1,5²) = (3√3)/2 (см).

Итак РО₁ = (3√3)/2 (см).

АО₁ = 1,5 (см).

РО₁ = 3√3/2 (см).

⇒ S△ABP = 1/2 · PO1 · AB = PO1 · AO1 = 1,5 · 3√3/2 = 9√3/4 (см²).

АР = РВ = АВ = 3 (cм).

p - полупериметр.

р = АР + РВ + АВ/2 = 3 + 3 + 3/2 = 4,5 (см).

R вписанного шара (ОО1) = S△ABP/p = 9√3/4 : 4,5 = √3/2 (см).

S поверхности шара = 4пR².

или

S поверхности шара = пD².

D = 2R

S поверхности шара = п(4 · (√3/2)²) = п(3/4 · 4) = 3п см²

S поверхности = п(√3/2 · 2)² = п((√3)²) = 3п см²

ответ: 3п (см²).
В конус у которого осевое сечение – правильный треугольник вписан шар. Найдите площадь поверхности ш

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Большее основание трапеции 19 см, высота 7 см, проекции боковых сторон на основание 3 см и 5 см. найдите площадь этой трапеции
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Fruktova Gazaryan
ekattatarenko
nagas
nekarpova
vodexshop2
Роман1406
Nadezhda
aananasAnastiya1270
archala
emartynova25
Golubitskaya378
roma8
Rakitin
director
Анна Елена