Відповідь:
Пояснення:
Щоб знайти периметр прямокутної трапеції, в яку вписано коло, треба знати її властивості. У такій трапеції 1) сума бокових сторін дорівнює сумі основ, 2) якщо точки дотику ділять бокову сторону на відрізки m i n, то r=√mn 3) менша бокова сторона дорівнює діаметру кола.
r=√18*8=12, отже менша бічна сторона = 12*2=24 см.
Більша бічна сторона = 8+18=26 см.
Сума бічних сторін=24+26=50 см.
Сума основ = сумі бічних сторін=50 см.
Периметр трапеції=50+50=100 см.
Відповідь: 100 см
Детальніше - на -
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника одна из которых на 6см больше чем вторая угол 120градусов а третья сторона 21см найдите периметр треугольника
Дано: ΔABC - равнобедренный, АВ=ВС, Sabc= 192 см², АС=АВ+4, окружность, впис. в ΔАВС, OR - радиус, OR= 6 см
Найти: АВ, ВС, АС.
Решение.
Пусть АВ=ВС= х см. По условию основание на 4 см больше, чем боковая сторона, значит, АС= х+4.
Площадь треугольника равна произведению полупериметра треугольника на радиус вписанной окружности.
S= p•r, где S - площадь треугольника, p - его периметр, r - радиус вписанной окружности.
Находим периметр ΔАВС.
Р= АВ+ВС+АС= х+х+х+4= 3х+4.
Полупериметр равен соответственно р= (3х+4)/2.
S= p•r;
192= (3x+4)/2 •6;
192= (3х+4)•3;
192= 9х+12;
9х= 192–12;
9х= 180;
х= 20 (см)
Значит, АВ=ВС= 20 см, АС= х+4= 20+4= 24 см.
ответ: 20 см, 20 см, 24 см.
Рисунок фактически здесь вообще не нужен, однако, если Вам так легче это представить...