Решение:АС=52 (по условию),ВМ-медиана => АМ =52:2=26 .чтн
expozition
02.12.2020
1. Пусть есть две ПРОИЗВОЛЬНЫЕ касающиеся окружности радиусов r и R, и к ним проведена общая внешняя касательная. Если провести радиусы в точки касания и линию центров, то получится прямоугольная трапеция с основаниями r и R и боковой стороной r + R;откуда длину касательной d (между точками касания) легко найти (r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r); 2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9; причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей. d = d1 + d2; 2√(R*x) + 2√(r*x) = 2*√(R*r); x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;
kapral1812
02.12.2020
Рассмотрим только один случай из трех . ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности). Из подобия треугольников ODL и CAH получаем DO/LO = AC/CH = 1/sin(BAC) DO=r/sin(BAC) Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c) Аналогично OE/OG=AC/CF=1/sin(ACB) OE=r/sin(ACB) OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c) Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)