Основанием пирамиды является прямоугольник, диагональ которого равна d, и образует со сторон угол альфа. высота пирамиды равна h. найти объём пирамиды.
Т.к. боковые рёбра наклонены под одним углом, то эти рёбра будут равны, следовательно, равны и их проекции, т.е. основание высоты равноудалено от вершин основания пирамиды, следовательно, это центр описанной окружности. Центром описанной окружности является середина гипотенузы т.е. проекции равны 30 см. Есть такое свойство: катет лежащий против угла в 30град. равен половине гипотенузы, т.е. наша гипотенуза - 60 см. Тогда высоту найдём как катет прямоугольного треугольника с другим катетом 30 см и противолежащим углом 30град. Н=30·tg30, H=30·1/√3=10√3 см
Юрий197
24.02.2021
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольника равны. Доказательство Возьмём треугольники ABC и A1B1C1, у которых AB=A1B1, BC=B1C1, CA-C1A1. Докажем, что треугольник ABC равен треугольнику A1B1C1. Приложим треугольник АВС к треугольнику А1В1С1 так, чтобы вершина А совместилась с вершиной А1, вершина В - с вершиной В1, а вершины С и С1 оказались по разные стороны от прямой А1В1. Так как по условию теоремы стороны АС и А1С1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С - равнобедренные. По теореме о свойстве углов равнобедренного треугольника Угол 1 равен углу 2, угол 3 равен углу 4, поэтому Угол А1СВ1 равен углу А1С1В1. Итак, АС = А1С1, BC=B1C1, Угол C=УглуC1. Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников. Теорема доказана.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основанием пирамиды является прямоугольник, диагональ которого равна d, и образует со сторон угол альфа. высота пирамиды равна h. найти объём пирамиды.
ABCD - прямоугольник
AC=d
SO=h
<ABC=90, <BAC=α
V=1/3*Sосн*H
Sосн=d*sinα*d*cosα=1/2d² *sin2α
V=1/3*1/2d²*sin2α*h=1/6d²*h*sin2α