Veronika1270
?>

Теорема фалеса в случае, когда прямые не параллельны, объясните, почему так: по доказанному b1c=cd. отсюда получаем: b1b2=b2b3. так почему равны-то? как мы это получили?

Геометрия

Ответы

yulialoveinthelow2010

Искомую площадь можно найти по-разному.  

1) Найти площадь четырехугольника АВОС и из нее вычесть площадь сектора круга.  

2) Найти площадь ∆ АВС и из неё вычесть площадь сегмента. ограниченного дугой ВС и хордой ВС.  

1) Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности⇒

∠ВАО=∠САО=120°:2=60°

∠АВО=∠АСО=90° т.к. радиусы, проведенные в точки касания, перпендикулярны касательным. ⇒

угол ВОС=60°, и ∆ ВОС - равносторонний.  

∆ АВО=∆ АСО - прямоугольные.  

АВ=BО:tg60°=6/√3=2√3

Длина дуги ВС =1/6 длины окружности, т.к. угол ВОС=1/6 полного круга.  

◡ВС=2πr:6=12π:6=2π

P=AB+AC+◡BC=2•2√3+2π=4√3+2π = ≈13,2114 см

Ѕ (АВОС)=2Ѕ(АВО)=ВО•AB=6•2√3=12√3

S (сектора)=1/6πr²=36π:6=6π

S(фиг. АВС)=S(ABOC)-S(сект)=12√3-6π=6•(2√3-π)=≈1,935 см*

Объяснение:

Как то так))) надеюсь удачки))

tvtanya80

ответ:8 см

Объяснение:

Пусть дана окружность с центром в т.О. Проведем прямую, которая пересечет окружность в т. А и т.В, т.о. АВ - хорда, АВ = 12 см. Т.к. т.А и В лежат на окружности, то ОА = ОВ = 10 см - это радиусы окружности. Получим треугольник АОВ - равнобедренный, АВ - основание. Проведем ОК ⊥ АВ, ОК - расстояние от центра до хорды. Значит ОК - медиана , АК = ВК = 12 : 2 = 6 см. Рассмотрим треугольник ОКА - прямоугольный и  найдем ОК используя теорему Пифагора.

ОК² = ОА² - АК² , ОК² = 100 - 36 = 64 см², ОК = корень из 64 = 8 см

ответ: 8см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Теорема фалеса в случае, когда прямые не параллельны, объясните, почему так: по доказанному b1c=cd. отсюда получаем: b1b2=b2b3. так почему равны-то? как мы это получили?
Ваше имя (никнейм)*
Email*
Комментарий*