8) Объем конуса равен: V=1/3пR^2H. Из центра проведем отрезки к концам хорды. Получим равнобедренный треугольник,т.к. радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высотой и медианой. От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду попалам, и ее половина равна 4корень из2. Тогда по теореме Пифагора найдем радиус:R= V16+32= V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник. Из этого треугольника найдем высоту. Н=R*tg60=4V3*V3=12см. Теперь найдем объем: V=1/3*п*48*12=192п см^3
8) Объем конуса равен: V=1/3пR^2H. Из центра проведем отрезки к концам хорды. Получим равнобедренный треугольник,т.к. радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высотой и медианой. От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду попалам, и ее половина равна 4корень из2. Тогда по теореме Пифагора найдем радиус:R= V16+32= V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник. Из этого треугольника найдем высоту. Н=R*tg60=4V3*V3=12см. Теперь найдем объем: V=1/3*п*48*12=192п см^3
Поделитесь своими знаниями, ответьте на вопрос:
Тогда АО=ОM; KO=ОС
1)∠АОC=∠KOM
(∠АОС=180°-∠АОK; ∠KOM=180°-∠АОK - проверка через смежные углы)
2) ΔАОC=ΔKOM по двум сторонам и углу между ними
3) ∠ACO=∠OKM из равенства треугольников
4) так как ∠ACK=∠CKM и они являются накрест лежащими углами при пересечении отрезков AC и KM отрезком CK, то AC параллельна MK