Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите диагональ четырехугольника если его периметр равен 80 см, а периметры треугольников, на которые эта диагональ разбивае данный четырехугольник, равны 36 см и 64 см
В эту сумму дважды включена искомая диагональ
2) 100 - 80 = 20 см - двойная диагональ
3) 20 : 2 = 10 см - искомая диагональ
ответ: 10 см
решения
a, b, c, d - стороны четырёхугольника
m - диагональ
1) a + b + c + d = 80 см - периметр четырёхугольника
2) a + b + m = 36 - периметр первого треугольника
3) c + d + m 64 - периметр второго треугольника
4) a + b + m + c + d + m = 36 +64
(a + b + c + d) + 2m = 100
80 + 2m = 100
2m = 100 - 80
2m = 20
m = 20 : 2
m = 10