Пусть АО - перпендикуляр к плоскости α. Значит АО - искомое расстояние.
Тогда ВО и СО - проекции наклонных АВ и АС на плоскость.
19 > 2√70, а большей наклонной соответствует большая проекция, если наклонные проведены из одной точки.
Пусть х - коэффициент пропорциональности, тогда ОС = 5х, ОВ = 4х.
Из прямоугольных треугольников АОВ и АОС выразим АО по теореме Пифагора:
АО² = АВ² - ВО² = 280 - 16х²
АО² = АС² - СО² = 361 - 25х²
280 - 16x² = 361 - 25x²
9x² = 81
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
АО² = 280 - 16 · 3² = 280 - 144 = 136
АО = √136 = 2√34 см
Поделитесь своими знаниями, ответьте на вопрос:
Точка f лежит на стороне ad параллелограмма abcd , bf=ab и. угол abf=50° вычислите градусные меры углов параллелограмма abcd
отсюда. угол А=(180-50)/2=65
2)т.к АВСД-п/г => угола А=углуС
и отсюда угол В равен углу Д = 115