aggeeva
?>

50 ! обчислить длину диагонали bd параллелограмма abcd, если a(2; 3; 2), b(0; 2; 4), c(4; 1; 0)

Геометрия

Ответы

lenapopovich556510
Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам.  Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма  О(3;2;1).
Теперь по этой же формуле найдем координаты вершины D параллелограмма.
(Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6)
 Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2}
Длина вектора BD, или его модуль, находится по формуле:
|BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14.
ответ: длина диагонали BD равна 2√14.
Likhomanova63

Pabcd = 24√5

Pabo = 6√5 + 18

∠BCD = ∠BAD ≈ 54°

∠ADC = ∠ABC ≈ 126°

Объяснение:

Диагонали ромба перпендикулярны и точкой пересечения делятся пополам, поэтому:

АО = ОС = АС/2 = 24/2 = 12

BO = OD = BD/2 = 12/2 = 6

ΔABO:  ∠AOB = 90°, по теореме Пифагора:

            АВ = √(АО² + ВО²) = √(12² + 6²) = √(144 + 36) = √180 = 6√5

Pabcd = AB · 4 = 6√5 · 4 = 24√5

Pabo = AB + AO + BO = 6√5 + 12 + 6 = 6√5 + 18

Из прямоугольного треугольника АВО:

sin\angle ABO=\dfrac{AO}{AB}=\dfrac{12}{6\sqrt{5}}=\dfrac{2\sqrt{5}}{5}

sin∠ABO ≈ 0,8944

∠ABO ≈ 63°

Так как диагонали ромба лежат на биссектрисах его углов, то

∠АВС = 2∠АВО ≈ 126°

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°, значит

∠BAD = 180° - ∠ABC ≈ 180° - 126° ≈ 54°

Противолежащие углы ромба равны, значит

∠BCD = ∠BAD ≈ 54°

∠ADC = ∠ABC ≈ 126°

В условии задачи, очевидно, ошибка, так как в ромбе с указанными диагоналями нет угла в 60°.


Диагонали ромба пересекаются в точке о и равны 12 и 24,найти периметр ромба и периметер одного из по
ellyb106786

Для удобства расчётов примем 1/8 часть стороны треугольника за х.

Площадь четырехугольника KLMN легче определить вычитанием трёх треугольников из заданного.

Стороны треугольника АKN равны половине исходного, тогда S1 = (1/4) *32 = 8 см².

Используя свойства прямоугольных треугольников с углами 60 и 30 градусов, находим площади треугольников BLM и CNM.

S(BLM) = (1/2)*3x*3√3x = (9/2)√3x² см²,

S(CNM) = (1/2)*2x*2√3x = 2√3x² см².

Их сумма равна S2 + S3 =  (9/2)√3x² + 2√3x² = (13/2)√3x² см².

Сторону исходного треугольника определяем на основе формулы площади равностороннего треугольника.

S = a²√3/4.

a = √(4S/√3) = √(4*32/√3) = 8√(2/√3).

Так как х = а/8, то х² = а²/64 = 64(2/√3)/64 = (2/√3).

Находим площадь S2 + S3 =  (13/2)√3*(2/√3) = 13 см².

ответ: S(KLMN) = 24 - 13 =11 см².


Площадь правильного треугольника abc равна 32 см ^ 2. точка n - середина отрезка ac, а точка m, l ра

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

50 ! обчислить длину диагонали bd параллелограмма abcd, если a(2; 3; 2), b(0; 2; 4), c(4; 1; 0)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Феофанов_Никита1067
tanias
Alekseevna1064
Leon-12
rvvrps
okunevo2010
margo55577869
Dodkhobekovich1683
ntyremsk1
dimiff5
Avdeeva Inga1505
timpavilion23
Korneeva1856
АркадьевичБундин789
memmedovallahverdi0239