dilbaryan76
?>

Найдите координаты вектора ab если a(2; -5), b(-3; 4

Геометрия

Ответы

hadzievamareta44
AB{-3-2; 4+5}
AB {-5; 9}
cutur3414

Точка касания окружности вписанной в равнобедренную трапецию делит ее боковую сторону на отрезки длиной 9 см и 16 см. Найдите площадь трапеции

Объяснение:

АВСD-трапеция АВ=СD, точки касания расположены на сторонах

А-Е-В, В-К-С, С-Т-D, А-Н-D ,АЕ=16 см,  ЕВ=9 см.

АВ=16+9=25 см. Значит СD=25 см.

S(трап.)= 1/2*Р*r , r-радиус вписанной окружности .

По свойству отрезков касательных АЕ=АН=DT=DH=16 см и

ВК=ВЕ=СК=СТ=9 см.

Р=25+25+(9+9)+(16+16)=100 (см)

Радиус вписаной окружности равен половинге высоты трапеции.

Пусть ВМ⊥АD ,ΔАВМ-прямоугольный , по т. Пифагора ВМ=√(25²-7²)=√576=24 (см)

Тогда r=1/2*24=12(см).

S(трап.)=1/2*100*12=600 (см²)


Точка дотику кола вписаного в рівнобічну трапецію ділить її бічну сторону на відрізки завдовжки 9 см
Нескажу25

9√3 ед²

Объяснение:

Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°,  КР⊥РТ;  КТ=4√3. Найти S(КМРТ).

Расcмотрим ΔКРТ - прямоугольный;  ∠РКТ=90-60=30°, значит, РТ=0,5КТ=2√3 по свойству катета, лежащего против угла 30 градусов.

Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;

∠ТРН=90-60=30°, значит, ТН=0,5РТ=√3.

Найдем РН по теореме Пифагора:

РН²=РТ²-ТН²=12-3=9;  РН=3.

Найдем МР.  ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР;  ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=2√3.

S(КМРТ)=(МР+КТ)/2 * РН = (2√3+4√3)/2 * 3=(3√3)*3=9√3 ед²


5.В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, есл

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите координаты вектора ab если a(2; -5), b(-3; 4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AnvarzhonovichNadezhda1071
avtalux527
nkochladze
Goldglobe
v79150101401
Zuriko1421
zibuxin6
anna-ditman
aananasAnastiya1270
Olia72
Сумарокова
cetarbkilork82
sadkofamily61
ПетровичЖивотовская1245
Viktorovich395