Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8.
рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15.
дальше. маленькое основание будет равно (15+6)-12=9
площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96
Поделитесь своими знаниями, ответьте на вопрос:
Биссектриса углов ad прямоугольника abcd пересекаются на стороне bc в точке f.найдите периметр прямоугольника если длина bf=6 см. !