1.
Пусть ∠1=х°, тогда ∠2=(42+х)°, что в сумме составляет 180° по определению смежных углов. Составим уравнение:
х+42+х=180; 2х=138; х=69.
∠1=∠3=69°; ∠2=∠4=69+42=111°.
2. Дано: ∠ВМК и ∠АМК - смежные, МС - биссектриса ∠АМК. Найти ∠СМК и ∠СМВ.
Пусть ∠ВМК=х°, тогда ∠АМК=5х°, что в сумме составляет 180°.
х+5х=180; 6х=180; х=30.
∠ВМК=30°, ∠АМК=30*5=150°
∠СМК=1/2 ∠АМК = 150:2=75°
∠СМВ=∠СМК+∠ВМК=75+30=105°
3. Дано: АВ и СD - прямые, ∠СОК=118°, ОК - биссектриса ∠АОD. Найти ∠ВОD.
∠КОD и ∠СОК - смежные, значит, их сумма составляет 180°.
∠КОD = 180-118=62°
∠АОК=∠КОD=62° (по определению биссектрисы)
∠АОК+∠КОD=62+62=124°
∠ВОD=180-124=56°
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Поделитесь своими знаниями, ответьте на вопрос:
Кубтын кыры 4см d1m = mk = kc1 * sabk -?