burylin9
?>

высота равностороннего треугольника равна 4, 2см. Найдите расстояние от точки пересечения биссектрис треугольника до его стороны.​​

Геометрия

Ответы

mustaevdmitry397

Объяснение:

таптын ба

Агибалов428

1. Если треугольники подобны, то отношения сторон у них равны.

Пусть х - коэффициент пропорциональности.

Тогда стороны треугольника 2x, 5x, 4x.

Меньшая сторона 2х = 22, тогда

х = 11 см

Большая сторона равна 5х:

11 · 5 = 55 см

2. Площади подобных треугольников относятся как квадрат коэффициента подобия.

Если сходственные стороны относятся как 3 : 5, то

Sabc : Smnp = 9 : 25

Учитывая, что Smnp = Sabc + 16, получаем уравнение:

Sabc : (Sabc + 16) = 9 : 25

25·Sabc = 9·Sabc + 144

16·Sabc = 144

Sabc = 9 см²


3. Пусть х - сторона квадрата.

Из треугольника, образованного двумя сторонами квадрата и диагональю по теореме Пифагора:

x² + x² = 16²

2x² = 256

x² = 128

x = 8√2 см

Р = 8√2 · 4 = 32√2 см


4. Из прямоугольного треугольника ACD по теореме Пифагора найдем АС:

АС = √(AD² - CD²) = √(225 - 64) = √161

Площадь параллелограмма равна произведению стороны на проведенную к ней высоту:

Sabcd = CD · AC = 8 · √161 = 8√161 см²


5. ΔАВН: ∠Н = 90°, ∠А = 60°, ⇒ ∠В = 30°. Напротив угла в 30° лежит катет, равный половине гипотенузы, АН = АВ/2 = 4 см.

По теореме Пифагора ВН = √(АВ² - АН²) = √(64 - 16) = √48 = 4√3 см

АН : HD = 2 : 3, ⇒ HD = 6 см.

HBCD - прямоугольник, ⇒ ВС = HD = 6 см.

Sabcd = (AD + BC)/2 · BH = (10 + 6)/2 · 4√3 = 32√3 см


6. ΔACD прямоугольный, DE его высота. По свойству пропорциональных отрезков в прямоугольном треугольнике:

DE² = AE · EC = 8 · 4 = 32

DE = √32 = 4√2 см

ΔAED: по теореме Пифагора

             AD = √(AE² + ED²) = √(64 + 32) = √96 = 4√6 см

ВС = AD = 4√6 см

ΔCDE: по теореме Пифагора

            CD = √(EC² + ED²) = √(16 + 32) = √48 = 4√3 см

АВ = CD = 4√3 см

а) АВ : ВС = 4√3 / (4√6) = 1/√2 = √2/2

б) Pabcd = (AB + BC)·2 = (4√3+ 4√6)·2 = 8·(√3 + √6) см

в) Sabcd = AB·BC = 4√3 · 4√6 = 16√18 = 48√2 см


7. Так как треугольники подобны,

BC : BD = BD : AD

BD² = BC · AD = 8 · 12,5 = 100

BD = 10 см


8. Треугольник АВС равнобедренный, медиана ВН является и высотой.

Из ΔАВН по теореме Пифагора:

ВН = √(АВ² - АН²) = √(625 - 49) = √576 = 24 см

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины:

ВО : ОН = 2 : 1, ⇒ ОН = ВН/3 = 8 см

Из треугольника АОН по теореме Пифагора:

АО = √(ОН² + АО²) = √(64 + 49) = √113 см

АО = 2/3 АМ

АМ = √113 · 3/2 = 3√113/2 см

В равнобедренном треугольнике медианы, проведенные к боковым сторонам равны, значит

СК = АМ = 3√113/2 см

samoilovcoc

драпежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасаты

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

высота равностороннего треугольника равна 4, 2см. Найдите расстояние от точки пересечения биссектрис треугольника до его стороны.​​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

МАМОНОВА-андрей
Кольцова
Romanovich1658
Сергеевна-Пузанов
Владислава531
Алексей Кирилл1094
namik120939
kot271104
борисовна Елена78
ЧумичеваГеннадьевна1827
KonovalovKonstantinovna1306
koxhulya61
Борисовна_Кашутина
des-32463
Ильдар-Кугай