Внутренние односторонние углы, образованных двумя параллельными прямыми и секущей, в сумме равны 180°, значит половины этих углов в сумме равны 90°. Таким образом, угол, образованный биссектрисами, равен 180°-90°=90°, что и требовалось доказать.
serg1976g
18.03.2021
По условию треугольник АВС - равнобедренный. Обозначим его равные стороны как 11х, а основание как 10х. Построим в треугольнике АВС высоту ВН. В равнобедренном треугольнике эта высота будет являться также и медианой (АН=СН=5x). Треугольники АВС и А1ВС1 подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны: - А1В : АВ = С1В : СВ = 1/2 (коэффициент подобия k=1/2); - угол В - общий для обоих треугольников. Зная, что отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, запишем: S A1BC1 : S ABC = k² = (1/2)²=1/4, отсюда S ABC = 4*S A1BC1=4*20√6=80√6. Площадь треугольника равна половине произведения его основания на высоту: S ABC = 1/2*АС*ВН 80√6 = 1/2*10х*ВН. Выразим высоту ВН. В прямоугольном треугольнике АНВ по теореме Пифагора можно выразить ее так: BH=√AB²-AH² BH=√(11x)²-(5x)² BH=√96x²=x√16*6=4x√6. Тогда 80√6 = 1/2*10х*ВН=1/2*10х*4x√6 80√6 = 20х²√6 х²=4 х=2 Находим периметр АВС: Р АВС = 11*2+10*2+11*2=64
violetta152028
18.03.2021
По условию треугольник АВС - равнобедренный. Обозначим его равные стороны как 11х, а основание как 10х. Построим в треугольнике АВС высоту ВН. В равнобедренном треугольнике эта высота будет являться также и медианой (АН=СН=5x). Треугольники АВС и А1ВС1 подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны: - А1В : АВ = С1В : СВ = 1/2 (коэффициент подобия k=1/2); - угол В - общий для обоих треугольников. Зная, что отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, запишем: S A1BC1 : S ABC = k² = (1/2)²=1/4, отсюда S ABC = 4*S A1BC1=4*20√6=80√6. Площадь треугольника равна половине произведения его основания на высоту: S ABC = 1/2*АС*ВН 80√6 = 1/2*10х*ВН. Выразим высоту ВН. В прямоугольном треугольнике АНВ по теореме Пифагора можно выразить ее так: BH=√AB²-AH² BH=√(11x)²-(5x)² BH=√96x²=x√16*6=4x√6. Тогда 80√6 = 1/2*10х*ВН=1/2*10х*4x√6 80√6 = 20х²√6 х²=4 х=2 Находим периметр АВС: Р АВС = 11*2+10*2+11*2=64
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Доказать что биссектриса внутренних односторонних углов при параллельных прямых перпендикулярно