ΔАСН: ∠АНС = 90°, ∠НАС = 30°, ⇒ СН = АС/2 = 30/2 = 15 как катет, лежащий напротив угла в 30°.
SitnikovYurii5
26.04.2021
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Boykoyelena
26.04.2021
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Угол b равнобедренного треугольника abc , равен 120 градусов. найдите расстояние от вершины c до прямой ab, если ac = 30
СН - искомое расстояние.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = (180° - ∠В) / 2 = (180° - 120°) / 2 = 30°
ΔАСН: ∠АНС = 90°, ∠НАС = 30°, ⇒
СН = АС/2 = 30/2 = 15 как катет, лежащий напротив угла в 30°.