8. <DBC=63°
9. P = 36 ед.
10. Не полное условие.
Объяснение:
Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
Рabcd = 6*AB = 36 ед.
Поскольку луч с проходит между сторонами угла (ab), по свойству измерения углов получаем: ∠(ac) + ∠(bc) = ∠(ab).
1) ∠(ab) = ∠(bc) + ∠(bc) + 30°, 60° = 2 ⋅ ∠(bc) + 30°;
2 ⋅ ∠(bc) = 30°; ∠(ac) = 45°, ∠(bc) = 15°.
2) ∠(ab) = 2 ⋅ ∠(bc) + ∠(bc), 60° = 3 ⋅ ∠(bc),
∠(ac) = 40°, ∠(bc) = 20°.
3) ∠(ac) = ∠(bc) = ∠(ab) : 2 = 60° : 2 = 30°.
4) ∠(ac) = 2x, ∠(bc) = 3x, ∠(ab) = 60°, 2x + 3x = 60°,
5x = 60°, x = 12°.
∠(ac) = 24°, ∠(bc) = 36°.
ответ: 1) ∠(ac) = 45°, ∠(bc) = 15°;
2) ∠(ac) = 40°, ∠(bc) = 20°;
3)∠(ac) = 30°, ∠(bc) = 60°;
4)∠(ac) = 24°, ∠(bc) = 36°.
Поделитесь своими знаниями, ответьте на вопрос:
А=55град. в=65град. ав=18в корне 3, найти диаметр окружности, описанной около треугольника авс