Длины всех ребер правильной шестиугольной призмы равны. Вычислителе длину большей диагонали призмы, если известно, что площадь боковой поверхности призмы равна 96 см².
Площадь боковой поверхности правильной шестиугольной призмы находится по формуле:
а - ребро нашей призмы.
Обратим внимание на чертеж. Искомая длина большей диагонали есть длина гипотенузы прямоугольного треугольника АА₁D.
AD = 2 * 4 = 8 (см)
По теореме Пифагора:
с² = a² + b²
AD₁² = AD² + DD₁²
AD₁² = 8² + 4²
AD₁² = 64 + 16
AD₁² = 80
AD₁ = √(16*5) = 4√5 (см)
ответ: 4√5 см
13. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔМСА и ΔМКА равны по общей гипотенузе и острому углу. Соответственные элементы в треугольниках равны. Следовательно, и МС=МК=13см.
ответ: 13см.
14. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔКАМ и ΔЕАМ равны по общей гипотенузе АМ и острым углам. Соответственные элементы равны. Следовательно, МЕ=МК=13см.
ответ: 13см.
15. Катет, лежащий против угла в 30° равен половине гипотенузы.
Угол А = 180-(40+40+70)=30°. Гипотенуза МА = 14см. МD = 14:2 = 7см.
ответ: 7см.
16. Катет, лежащий против угла в 30° равен половине гипотенузы.
Треугольник ВМА р/б, МN - биссектриса. Треугольник СВМ равносторонний, все углы по 60°. Угол ВМD=30°. Следовательно, ∠СВА = 90°. Угол А = 90°-60°=30°.
Аналогично 15 задаче - 8:2=4см.
ответ: 4см.
Поделитесь своими знаниями, ответьте на вопрос:
Плоскость а(альфа) пересекает стороны ав и вс треугольника авс в точках м и n соответственно. пралельна стороне ас. найти мn если ас = 24 и вм: ма = 3: 1