buhtovarish
?>

Площадь прямоугольника равна 36 см2. найдите площадь четырёхугольника, вершинами которого являются середины сторон данного прямоугольника.

Геометрия

Ответы

denis302007
Здесь очень просто.
АВСД - прямоугольник. 
Точки K, L, M,  N - середины сторон АВ ВС СД АД соответственно.
Совершенно понятно, что KLMN - ромб.
Площадь прям-ка: Sп=АВ*АД=36 см³
Площадь ромба Sр=KM*LN/2
KM=АД, LN=АВ, значит
Sр=АД*АВ/2=Sп/2=36/2=18 см³
Yekaterina

С линейки проводим прямую и на ней с циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.

Далее строим угол ВАF равный углу 1. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 1  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.

С циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.

Далее, проводим луч АF с линейки.

Далее, строим угол АВD равный углу 2. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 2  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.

С циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.

Далее, проводим луч ВD с линейки.

Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС - искомый.

Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 1800. Значит, сумма двух данных углов должна быть меньше 1800. Если же сумма двух данных углов будет больше 1800, то нельзя построить треугольник, углы которого равнялись бы данным углам.

Объяснение:

qwqwweqw3
Проведём высоты СР и ДМ к основанию АВ. ДМ=СР.
АМ+ВР=АВ-МР=АВ-СД=27-18=9 см.
Пусть АМ=х, тогда ВР=9-х.
В тр-ке АДМ ДМ²=АД²-АМ²=9-х².
В тр-ке ВСР СР²=ВС²-ВР²=(6√2)²-(9-х)²=72-81+18х-х²=18х-9-х².
9-х²=18х-9-х²,
18х=18,
х=1. АМ=1 см.
ДМ²=9-1=8,
ДМ=2√2 см.
К основаниям трапеции через точку К проведём перпендикуляр НТ. НТ=ДМ.
По свойству трапеции треугольники АКВ и СКД подобны, значит АВ/СД=ТК/НК.
Пусть ТК=у, тогда НК=2√2-у.
27/18=у/(2√2-у),
54√2-27у=18у,
45у=54√2,
у=1.2√2. ТК=1.2√2 см.
S(АВД)=АВ·ДМ/2=27·2√2/2=27√2 см².
S(АКВ)=АВ·ТК/2=27·1.2√2/2=16.2√2 см².
S(АКД)=S(АВД)-S(АКВ)=27√2-16.2√2=10.8√2 см² - это ответ.
Втрапеции авсd отрезки ав и сd являются основаниями. диагонали трапеции пересекаются в точке к. найд

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площадь прямоугольника равна 36 см2. найдите площадь четырёхугольника, вершинами которого являются середины сторон данного прямоугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

edvlwork15
vs617
strelnikov-aa
ilyatamurov
zaseche99
mnogomams47
Ladiga_Evgenii886
uvarovig
pavelriga5
КристинаАлександр
43 , решите хоть несколько ! 9 класс
antilopa001
Emasterova77
Lenamihluk50
Маринина_Елена
ielienakozlova696