Пусть С - начало координат
Ось X - CB
Ось Y - Перпендикулярно X в сторону A
Ось Z - СС1
1)
Координаты точек
D (√13;0;√13/2)
N(3√13/4;√39/4;√13)
Вектора
СD ( √13;0;√13/2)
DN( -√13/4;√39/4;√13/2)
CD*DN = -13/4 + 13/4 =0 - перпендикулярны.
2)
Уравнение плоскости
BCC1
y=0
Уравнение плоскости
CDN
ax+by+cz=0
подставляем координаты точек D и N
√13a + √13c/2 =0
3√13a/4 + √39b/4 + √13c =0
Пусть a=1 тогда с = -2 b= 5√3/3
Уравнение
x +5√3y/3 - 2z =0
Косинус искомого угла
5√3/3 / √(1+25/3+4) = √(5/8)
Синус √(3/8)
Тангенс √(3/5)= √15/5
Картинка в этой задаче действительно желательна.
Объем правильной треугольной призмы равен произведению площади основания на высоту призмы.
Площадь основания - это площадь правильного треугольника со стороной а.
Формула площади равностороннего треугольника
S=(a²√3):4
Высоту призмы найдем из прямоугольного треугольника,
катеты в котором- высота призмы и высота треугольника=основания,
а гипотенуза - данное в условии расстояние b от вершины одного основания до противолежащей стороны другого основания.
Высота правильного треугольника находится по формуле
h=а√3):2
Высоту призмы найдем по теореме Пифагора:
Н= √(b²-h²)=√(b²-3а²:4)
V= (a²√3):4)·√(b²-3а²:4)
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике abc проведена высота bd к основанию ac. длина высоты — 11, 1 см, длина боковой стороны — 22, 2 см. определи углы этого треугольника. : *
Объяснение:
катет ВД=1/2 гипотенузы АВ в прямоугольном тр-ке АВД (11,1=1/2*22,6); значит лежит против угла 30гр, угол ВАС=30гр. угол ВСА=углу ВАС=30гр. (углы при основании равнобедренного треугольника равны);угол АВС - третий в треугольнике, т.к. сумма углов тр-ка=180гр., а два известны (по 30гр.), то угол АВС=180-30-30=120гр.