Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
По теореме Пифагора: х² = (x/2)² + (12√3)².
х² = x²/4 + 144 * 3.
х² - x²/4 = 432.
(4х²)/4 - x²/4 = 432.
(3х²)/4 = 432.
3х² = 432 * 4;
3х² = 1728;
х² = 1728/3 = 576.
х = √576 = 24.
ответ: сторона треугольника равна 24.
Объяснение:
Объяснение:
Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°
Поделитесь своими знаниями, ответьте на вопрос:
Докажите равенство прямоугольниках треугольников по гипотенузе и острому углу ?
Здесь один угол 90 градусов = углу 90 др. тр ка - 1ое в условии, так как тр-к прямоугольный.
Гипотенуза (самая длинная в прямоугольном тр-ке) против прямого угла = такой же гипотенузе др. тр-ка - 2 ое в условии.
Острый угол при гипотенузе и углом 90 градусов = острому углу др. тр-ка- 3 ие условие.