arammejlumyan
?>

Боковая сторона равнобедренного треугольника равна 40 см, а высота, проведенная к основанию, – 4√91 см. найдите расстояние между точками пересечения биссектрис углов при основании треугольника с его боковыми сторонами.

Геометрия

Ответы

Norov
Биссектрисы углов при основании равнобедренного треугольника равны)) получится еще несколько равнобедренных треугольников...
можно использовать подобие (искомый отрезок будет параллелен основанию данного треугольника)))
а можно использовать известный факт: биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам...
основание треугольника легко найти по т.Пифагора))

Боковая сторона равнобедренного треугольника равна 40 см, а высота, проведенная к основанию, – 4√91
motor2218

Объем пирамиды = V = S осн · H / 3

1) найдем H: так как sina = противолежащий катет / на гипотенузу

находим H = sina·L.

2) найти R описанной окружности основания..т.е 2h/3..R= cosa·L=2h/3 = h = (3 cos a · L)/2..

треугольника..a(квадрат)а(квадрат)/4 = h(квадрат)..a = (3 cos a ·L) / корень из 3...подставляем под формулу для вычисления площади треугольника = a ((квадрат) корень из 3 )/4 ..получаем S = 3 cos(квадрат) A · L(квадрат) · корень из 3 / и все деленное 4..теперь все подставляем в формулу V для объема..

V = 3 · Cos(квадрат) А · sin A · L (куб)· корень из 3 и все деленное на 4

albina6580
Из точки В проведём прямую ВЕ, параллельную диагонали АС, Е ∈ AD ⇒  BEAC - параллелограмм, ВС || ЕА, ВЕ || АСЗначит, ВС = ЕА , ВЕ = АС - по свойству параллелограммаАС⊥BD - по условию, ВЕ || АС ⇒ ВЕ⊥BD, AB⊥ED▪В ΔВЕD: пропорциональные отрезки в прямоугольном треугольнике ( см. приложение )АВ² = ЕА • АDEA = AB² / AD = 18² / 24 = 13,5 смВС = 13,5 см▪В ΔBAD:  по теореме ПифагораBD² = AB² + AD² = 18² + 24² = 6²•( 3² + 4² ) = 36•25 = 30²BD = 30 смAD² = OD • BD  ⇒  OD = AD² / BD = 24² / 30 = 576 / 30 = 19,2 смBO = BD - OD = 30 - 19,2 = 10,8 см▪В ΔBAD:  AO² = BO • OD = 10,8 • 19,2 = 207,36 AO = 14,4 см▪В ΔАВС:  ВО² = АО • ОС  ⇒  ОС = ВО² / АО = 10,8² / 14,4 = 8,1ОТВЕТ: ВС = 13,5 см ; СО = 8,1 см ; АО = 14,4 см ; ВО = 10,8 см ; DO = 19,2 см.
Диагонали прямоугольной трапеции abcd взаимно перпендикулярны. короткая боковая сторона ab равна 18
Диагонали прямоугольной трапеции abcd взаимно перпендикулярны. короткая боковая сторона ab равна 18

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Боковая сторона равнобедренного треугольника равна 40 см, а высота, проведенная к основанию, – 4√91 см. найдите расстояние между точками пересечения биссектрис углов при основании треугольника с его боковыми сторонами.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

achernakov
Бражинскене_Алексей
azarov8906
larinafashion829
Александровна-Васильевна
slitex
lokos201272
sabinina0578
hamelleon43
Ермакова Ирина674
orb-barmanager
Елена_Зайкин1665
oshemkov579
mamanger
shurshin6975