Відповідь:
Из условия известно, что периметр равнобедренного треугольника равен 48 см. Так же известно, что его боковая сторона в 1.5 раза больше основания. Для того, чтобы вычислить стороны треугольника составим и решим уравнение.
Давай обозначим с переменной x см длину основания, а с 1.5x см длину боковой стороны.
Для нахождения периметра равнобедренного треугольника:
P = 2a + b;
2 * 1.5x + x = 48;
3x + x = 48;
4x = 48;
x = 48 : 4;
x = 12 см длина основания, тогда 1,5 * 12 = 18 см основание треугольника.
Вот :3
Пояснення:
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc cd — медиана, угол acb равенугол в равен 16°. найдите угол acd. ответ дайтев градусах
а) Доказательство:
АВ = ВМ, по условию, значит треугольник АВМ - равнобедренный. По свойству равнобедренного треугольника угол ВАМ = углу ВМА.
По свойству параллелограмма ВС параллельно АD, АС - секущая, значит угол АМВ = углу МАD, из вышесказанного следует, что угол ВАМ = углу МАD, значит АМ - биссектрисса
б) Решение:
АВ = СD по свойству параллелограмма,а АВ = ВМ из доказательства. Значит АВ = ВМ = СD = 8 см
МС = 4 по условию. ВС = ВМ + МС = 8 + 4 = 12. По свойству параллелограмма ВС = АD = 12
теперь можем найти площадь: Р = АВ + ВС + СD + DА = 8 + 12 + 8 + 12 = 40 см