В ΔАВС найти периметр и длины медиан, если А(3/2 ;1;-2) , В(2;2;-3) , С(2;0;-1).
Объяснение:
а)d=√( (х₁-х₂)²+(у₁-у₂)²+ (z₁-z₂)²), где (х₁;у₁; z₁), (х₂;у₂; z₂) -координаты концов отрезка.
АВ=√( (2-1,5)²+(2-1)²+ (-3+2)²)=√( 0,25+1+1)=√2,25=1,5 ;
АС=√( (2-1,5)²+(0-1)²+ (-1+2)²)=√( 0,25+1+1)=√2,25=1,5 ;
ВС=√( (2-2)²+(0-2)²+ (-1+3)²)=√( 0 +4+4)=√8=2√2.
Р=АВ+АС+ВС , Р=3+2√2.
б) х=(х₁+х₂):2 ,у=(у₁+у₂):2 , z=(z₁+z₂):2, где (х₁;у₁), (х₂;у ₂), (z₁;z₂), координаты концов отрезка , (х;у ;z), -координаты середины.
К-середина СВ. Координаты К( (2+2):2 ; (0+2):2 ;(-1-3):2 ) или К(2;1;-2)
АК=√( (2-1,5)²+(1-1)²+ (-2+2)²)=√( 0,25 +0+0)=√0,25=0,5.
М-середина АС. Координаты М( 1,75; 0,5 ;-1,5) ,
ВМ=√( (1,75-2)²+(0,5-2)²+ (-1,5+3)²)=√( 0,0625 +0,25+2,25)=√2,5625,
Р-середина АВ. Координаты Р( 1,75; 1,5 ;-2,5) ,
СР=√( (1,75-2)²+(1,5-0)²+ (-2,5+1)²)=√( 0,0625 +2,25+2,25)=√4,5625.
Поделитесь своими знаниями, ответьте на вопрос:
Основа рівнобедреного трикутника дорівнюе 4см бічні сторони по 10 у трикутнику вписане в коло а до нього проведена дотична що перетинае бічні сторони знайдіть периметр трикутника який відтинае дотична
Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.
Объяснение:
1) Медианы треугольника точкой пересечения делятся 2:1 , считая от вершины: ОК=1/3*АК ; LO=1/3*LC.
2)РЕ║АК ⇒ RE=1/3*PE,
PF║CL ⇒ QF=1/3*PE.
3)ΔREN подобен ΔPEF ( по 2 углам, там целая куча соответственных углов), значит сходственные стороны пропорциональны⇒
EN/EF=RE/PE или EN/EF=1/3 или EN=1/3*EF ;
ΔQFM подобен ΔPFE( по 2 углам) ,значит сходственные стороны пропорциональны⇒ FM/EF=QF/PE или FM/EF=1/3 или FM=1/3*EF.
4) Получили , что M и N разделили отрезок FE на 3 равные части.